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Abstract 

In an era where industries are increasingly prioritizing sustainability and efficiency, optimizing 
manufacturing processes is mandatory. Among these processes, lathe operations are widely used in 
industry and consume significant amount of energy. This research investigates the monitoring of a turning 
process, focusing on real-time data analysis with the final aim of achieving a more sustainable and energy 
efficient machining process. Using an integrated agent framework for monitoring of machining outputs, 
the machining parameters such as spindle speed, feed rate and depth of cut are optimized. A Multi-Agent 
Distributed System (MADS) is created and implemented for real-time data acquisition, filtering, storage 
and visualisation. Comprehensive analysis of energy consumption data during cutting intervals  led to the 
identification of energy distribution patterns and inefficiencies. Additionally, insights into the progression 
of tool wear made it possible to identify consumption,  specific to the cutting operations, in order to define 
predictive maintenance strategies and thereby reducing operational downtime. The results are 
contextualised with KPIs that provide information on process optimisation, including recommendations on 
energy saving parameters and cost reduction opportunities, thereby enhancing decision-making in 
machining operations.  
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1 INTRODUCTION 
 
Manufacturing plays a major role in industrial CO₂ 
emissions and global energy consumption.. Recent studies 
[Duflou 2012 et al.] emphasise that  the sector accounts for 
around 84% of industrial CO₂ emissions and over 50% of 

global energy use, highlighting the need for adopting 
sustainable practices. Improving energy efficiency in 
machining, especially in turning processes, which are 
widely used and energy intensive, is crucial for lowering 
manufacturing costs and increasing sustainability. Despite 
the potential of Industry 4.0, a 2020 global survey showed 
that 52% of manufacturers lack the expertise and culture to 
implement these technologies, and only 28% have done so 
successfully [Liu 2022 et al.]. Accessible, modular solutions 
like MADS can therefore support a smoother transition 
toward digital and data-driven manufacturing. 
 
This study reveals that a significant part of energy 
consumption in turning operations derives not from the 
cutting phases, but from non-cutting phases such as tool 
repositioning, spindle acceleration, and idle periods. The 
data collected from the industrial case study analysed in 
this work show that cutting energy corresponds only to the 
21.9% of the total energy consumption, highlighting the 
potential to optimize the remaining 78.1%.  

Moreover, although it is possible to lower the power 
demand by lowering spindle speed and feed rate, it has 
been observed that the total energy consumption may 
increase due to longer machining times, suggesting the 
necessity for  selection of dynamic process parameters. 
These results highlight the requirement for smart, real-time 
control of machining settings to balance power demand, 
production, and tool health. 
 
The present study proposes the implementation of a Multi-
Agent Distributed System (MADS), as a real-time 
monitoring system for industrial applications suitable for 
turning operations monitoring. MADS enables real-time 
monitoring, adaptive parameter control and facilitates data 
acquisition, filtering, storage, and visualization, thus guiding 
operators toward easier decision-making and leading to 
improved energy efficiency and predictive maintenance 
capabilities.  
As adapted for turning processes, MADS is easy to set up 
and offers accessible information, making it well-suited for 
integration within production line monitoring systems in 
manufacturing industries. 
Experimental measurements conducted under varying 
cutting conditions have shown that robust predictive models 
for total machine energy consumption can be developed [Li 
2011 et al.]. Recent studies on machinability in turning 
processes [Ni 2023 et al.] confirm that cutting parameters, 



 

MM SCIENCE JOURNAL I 2025 I Special Issue on HSM2025 
8801 

especially feed rate and depth of cut, significantly influence 
cutting force, temperature, and energy usage, reinforcing 
the importance of real-time parameter optimization. 
Furthermore, to create cutting power-based energy 
consumption models, it is necessary to precisely 
differentiate idle and cutting power [Shi 2020 et al.]. These 
models, by dynamically considering parameters such as 
spindle speed and cutting power contributions, 
demonstrate that flexible and accurate energy models lead 
to superior results in modern machining analysis [Shi 2020 
et al.]. Easy access to a large amount of information, 
increases process accuracy and energy efficiency [Xu 2018 
et al.].  
 
A data-driven approach is essential for improving the 
accuracy of energy analysis. In particular, it allows for the 
separation of cutting energy from auxiliary consumption, 
supporting more targeted process optimizations. This 
methodology aligns with advanced studies in sustainable 
manufacturing research [Shokravi 2022 et al.] [ Ragai 2022 
et al.], which highlight detailed mapping of energy 
consumptions for customised optimisation solutions. 
 
Additionally, by correlating energy consumption patterns 
with tool wear progression, this study identifies 
opportunities for predictive maintenance, increasingly 
enabled by the use of machine learning and Artificial 
Intelligence (AI) technologies. The relationship between 
wear and energy consumption can be used to create 
models useful for implementing real-time tool wear 
monitoring, proactive maintenance planning and fulfulling 
the objectives of reducing the incidence of unplanned 
downtime and maximizing tool life [Wang 2022 et al.] [Pérez 
2019 et al.]. This link has been supported by different 
studies in which cutting energy distribution was successfully 
used to predict wear volume and tool degradation over time 
[Zhang 2016 et al.]. 
 
In addition, to improve energy performance, the system 
supports predictive maintenance by detecting early signs of 
tool wear and inefficiencies. MADS provides a modular, 
scalable, and flexible solution that aligns with the goals of 
intelligent manufacturing and supports the transition 
towards Industry 4.0. 
 
Advanced sensor technologies enable the real-time 
monitoring and control that is required to optimize energy 
consumption and ensure operational reliability over time 
[Ibrahim 2024 et al.]. These technologies enhance energy 
efficiency not only at the machine level but also throughout 
whole industrial networks and supply chains by supporting 
a multi-scale systems approach [Duflou 2012 et al.]. 
 
This research presents optimization strategies derived from 
a real industrial case study, using key performance 
indicators (KPIs) to enable real-time energy monitoring and 
provide a practical, scalable solution. Overall, this work 
represents an important step toward creating 
manufacturing systems that are not only more energy-
efficient but also more responsive and adaptive to real-time 
conditions. 

2 ANALYTICAL MODELLING 

 
In this section, the basic relations used during this study to 
calculate the energy on the turning process are presented, 
focusing on the interaction between cutting parameters and 
their effect on power demand and energy usage. 
 

2.1 Power Consumption during cutting  

The instantaneous power required for material removal 𝑃𝑐 

(W), that is a function of time, is determined by the 
interaction of cutting force 𝐹𝑐 (N), which acts in the direction 

of cutting, and the cutting speed 𝑉𝑐   (m/min) [Ni 2023 et al.]. 

This relationship is given by Eq. (1): 
                                  

𝑃𝑐 =
𝐹𝑐𝑉𝑐

60
                                                                  (1)  

 
Increments in cutting force or cutting velocity directly affect 
the power consumption. Power demand in cutting is also 
related to the material removal rate 𝑀𝑅𝑅 (mm³/min) and is 

expressed, in cylindrical turning, as proportional to the 
product of the depth of cut 𝑎𝑝 (mm), the feed 𝑓 (mm) and 

the cutting speed 𝑉𝑐 (m/min) [Groover 2013]: 

 

 𝑀𝑅𝑅 = 𝑎𝑝𝑓1000𝑉𝑐                  (2) 

 

Increasing any of these parameters results in a higher 
MRR, leading to an improvement in productivity but also an 
increase in the energy required for cutting. For an optimized 
𝑉𝑐 (constant), spindle speed 𝑆 (rpm) changes according to 

cutting diameter (Di), Eq. (3): 
 

𝑆 =
1000∙𝑉𝑐

𝜋∙𝐷𝑖
                                                            (3)      

 

2.2 Consumed Energy  

The total energy consumed during a machining cycle, 
𝐸(𝑡) (J), includes both productive (cutting) and non-

productive (auxiliary) phases. It is obtained by integrating 
the instantaneous power 𝑃 (W) over the entire process 

time 𝑡, as shown in Eq. (4): 

 

𝐸(𝑡) = ∫ 𝑃(𝑥)
𝑡

0
𝑑𝑥                                (4)  

 
This integral represents the cumulative energy drawn by the 
machine throughout the process time 𝑡, including during 
tool engagement, idle states, and transitions.  

In order to identify the energy used only for material 
removal, the cutting energy 𝐸𝑐(𝑡) is defined as the integral 

of cutting power 𝑃𝑐 over the cutting period, when the tool is 

in contact with the workpiece: 

 

𝐸𝑐(𝑡) = ∫ 𝑃𝑐(𝑥)
𝑡𝑐𝑢𝑡

𝑡𝑐𝑢𝑡0
𝑑𝑥                                            (5)  

 

Here, 𝑡𝑐𝑢𝑡0 and 𝑡𝑐𝑢𝑡 mark the start and end of the cutting 

phase. Finally, the net cutting energy 𝐸𝑛𝑒𝑡(𝑡) is introduced. 

The objective of Eq. (6) is to isolate the energy used 
exclusively for chip formation. To do so, it subtracts the 
auxiliary power baseline 𝑃𝑎𝑢𝑥 (used for systems like coolant 

pumps, spindle rotation during idle, tool movements and 
control electronics) during the cutting period from the 
cutting power 𝑃𝑐: 

 

𝐸𝑛𝑒𝑡(𝑡) = ∫ [𝑃𝑐(𝑡) − 𝑃𝑎𝑢𝑥(𝑡)](𝑥)
𝑡𝑐𝑢𝑡

𝑡𝑐𝑢𝑡0
𝑑𝑥                 (6)  

This net energy value reflects only the energy directly 
contributing to chip formation, making it a more accurate 
indicator to support sustainability and efficiency 
evaluations. 

 

2.3 Cutting Force Estimation 

Cutting force 𝐹𝑐 (N) can be calculated using the 

experimental cutting power, using Eq. (7): 
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𝐹𝑐 =
𝑃𝑐60

𝑉𝑐
                                 (7) 

 

2.4 Specific Cutting Force Estimation 

To evaluate mechanical efficiency, the specific cutting 
force 𝐾𝑐 (N/mm²) is defined as the ratio between cutting 

force 𝐹𝑐 and area of cut (depth of cut times feed 𝑓): 

 

𝐾𝑐 =
𝐹𝑐

(𝑎𝑝∙𝑓)
                                  (8) 

 
This parameter indicates the force which is required per unit 
area of material being cut. The interdependence between 
cutting parameters, force and energy reveals the 
complexity of turning processes: interdependent and critical 
for designing efficient, cost-effective, and sustainable 
machining strategies. These models collectively enable 
predictive analysis of tool behaviour and machining 
performance. 
 

3 EXPERIMENTS SETUP AND METHODOLOGY 

 
An industrial case is used as a motivation for this study. The 
results of these experiments will guide the development of 
energy optimization strategies for turning processes, by 
identifying opportunities to reduce energy consumption 
while maintaining machining performance. The fundings 
will be the inputs for the implemention of the monitoring 
external system supported in this research.  
 

3.1 Experimental Set-up  

Turning operations were carried out on a Huron AX MSY 
300 lathe. The tool used was an 80° diamond shape 
double-sided, negative-style turning insert, with a chip 
breaker designed for medium machining of steels, and with 
a coated carbide for wear resistance. The insert was 
mounted on a left-hand turning toolholder with a 20x20 mm 
shank, with a 95° approach angle. Low alloy steel forged 
industrial raw parts have been machined. 
 

3.2 Methodology  

During machining, the machine-tool was monitored and the 
following parameters were recorded: active power, 
programmed position and actual encoder position (X and Z) 
and Z axis-load. The subsequent machining tests were 
carried out on nine parts: 

- Energy consumption using the original program ( 𝑉𝑐 =
320 𝑚/𝑚𝑖𝑛  is constant), at 50% and 100% feed to 

verify that, as the work load reduced, the energy is 
reduced; 

- Power demand when machining at different spindle 
speeds, as well as when the spindle was operated at 
these speeds without material removal, to verify 𝑎𝑝 and 

𝑓 influence on the consumptions; 

- Analysis of the power consumption evolution with 
progressive tool wear; 

- Reconduction of the Initial program monitoring with 
worn tool. 

4 ENERGY ANALYSIS ON TURNING PROCESS 
 
In this section, a power and energy analysis was conducted 
using the machine-tool data. The evaluation focuses on 
distinguishing the energy used for actual material removal 
from that consumed during auxiliary machine movements 
or idle states when machining at 100% feed. 

By isolating the cutting intervals, analysing energy 
distribution, and comparing power usage with and without 
active machining, the impact of process parameters on 
overall energy demand is better understood. 
 

4.1 Cutting intervals identification 

The identification of the cutting intervals has been a crucial 
step in our analyses. The power curve shown in Fig. 1, is 
representing the power consumptions recorded while 
machining one workpiece using the optimized program in 
the industry (previous studies were developed to find the 
optimal cutting speed that increases productivity and 
reduces the tool wear).  

 

Fig. 1: Identification of cutting intervals and relative 
average power consumption during machining  

The portions of the curves coloured in green correspond the 
cutting intervals, they were identified using the program 
code. To estimate the power consumed only  by the 
material removal, the value of average power consumed by 
auxiliary sources was subtracted from the overall average 
value of each cutting interval sondidered. 

 

4.2 Energy distribution 
 

 

Fig. 2: Energy consumption along the machining 

Based on the power measured (Fig. 1), the consumed 
energy during the machining program is calculated by 
integrating the power consumed along the machining time 
and the blue bands identify the different cutting stages (the 
eight cutting phases in the program). The black curve on 
Fig. 2 takes into consideration all the sources of energy 
consumptions.  

In this industrial case, the total energy consumed by the 
process is 262 kJ. The red curve considers only the power 
during the cutting stages, thus, it includes the cutting power 
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and the other consumptions during cutting, and it sums up 
to 55 kJ, which is 20.9% of the total energy. This shows that 
there is a high portion of energy which  could be optimised 
and monitored. 

 

4.3 Power consumption comparison: load and no-
load machining 

Power consumption presented in Fig. 1 is compared with 
the power consumption using the same program but when 
the tool is charged on the skank but  is not engaging in 
cutting (air cutting). The energy consumed on the total 
machining time in air cutting is 215 kJ. One can claim that 
as  only a small part of the energy (20%) is spent for cutting, 
and that the two important sources of energy in air cutting 
are: spindle speed (based on the optimized cutting speed) 
and the energy used for fast movement and tool exchange.  

5 EXPERIMENT RESULTS DISCUSSION  

 
The main outcomes of the experimental investigation are 
discussed in this section, focusing on how feed rate, spindle 
speed, and tool wear influence power consumption and 
energy usage. 
 

5.1 Reduction of the feed rate  

The impact of varying feed rates on power and energy 
consumption was evaluated by comparing machining at 
50% and 100% feed rates, as presented in Table 1. 
Results prove that even if the average power is smaller 
when machining at 50% feed rate, the total energy is higher 
since machining time is increased. More energy is spent to 
remove material and more energy is lost due to inefficiency.  

Tab. 1: Comparison between 50% and 100% feed rate 
machining processes parameters. 

Parameters 100% Feed 50% Feed Comparison 

Average 
Power (kW) 

5 3 -20% 

Cutting 
Energy (kJ) 

46 49 +6% 

Non-Cutting 
Energy (kJ) 

216 281 +23% 

Average Feed 
rate Force (N) 

1469 1058 -39% 

 

Tab. 2: Fc and Kc in both cases (regular and 50%). 

Cutting 
phases 

Ap(mm) 
fz (mm/rev) 

 
Fc (N) 

Kc 

(N/mm²) 

5  1.725 0.47 17304 21354 

5 * 1.725 0.235 9176 22641 

6 1.500 0.47 18110 25674 

6 * 1.500 0.235 9780 27752 

7 1.475 0.35 17782 34453 

7 * 1.475 0.175 13528 52413 

                                                                                         
For Table 2, cutting force 𝐹𝑐 and specific cutting force 𝐾𝑐 

have been calculated for cutting intervals 5, 6 and 7 of the 
machining programs. 
Higher feed rate results in higher 𝐹𝑐 and 𝐾𝑐, which can be 

used to estimate the efficiency of the cutting process. 
 

5.2 Effect of spindle speed on power consumption 

The program used during the experimental phase is 
machining the workpiece at different diameters but at 

constant cutting speed. Thus, the spindle must adjust its 
spindle speeds every time. 
In order to investigate the relation between spindle speeds 
and power consumptions, before machining the pieces, 
power data have been recorded only by rotating the turning 
spindle at the same spindle speeds used in the machining 
program. The spindle speeds (rpm) used in the program 
were determined by applying Eq. (3) as: 1652, 1750, 1845, 
2383, 2515, 3395, and 5093.  
 

 

Fig. 3: Power distribution of different spindle speeds. 

 

Fig. 4: Power harmonics across different spindle speeds 

To simulate the same weight of the working piece during 
the machining operation, one piece has been placed inside 
the chuck, but no cutting or tool movement has been 
performed. 
In Fig. 3 it can be noticed that the dispersion of the scattered 
points increases when the speed increases because of the 
presence of higher oscillations. As shown in Fig. 4, the 
power consumed is higher when we increase the spindle 
speeds. After comparing the power consumptions obtained 
by just moving the spindle, with the ones collected when 
machining, the effect of different 𝑓 and 𝑎𝑝 used in the 

program is refected in the power values.  
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5.3 Tool wear Analysis 

During the wear test, after every machined piece, the tool 
has been observed with microscope. The flank wear has 
been measured and used to create a tool life curve. 

 

Fig. 5: Cutting tool wear images. 

 

Fig. 6: Tool life curve. 

Tool wear was evaluated by examining the cutting edge of 
the insert. Five parts were machined, with material removal 
gradually increased on the later parts to accelerate tool 
wear. During the wear test, after every machined piece, 
flank wear measurements were carried out using a 
Keyence VHX microscope, the results are shown in Fig. 5.  

The corresponding tool life curve, shown in Fig. 6, displays 
an initial phase of rapid wear growth followed by the 
beginning of a steady wear phase. As expected, the curve 
has an initial phase of quick growth and a beginning of 
steady phase. To create a more complete curve that 
includes also a severe wear stage, additional passes 
should be performed.  

The last workpiece was machined using the industrial 
program with a worn tool. Although total energy 
consumption showed no significant increase compared to 
machining with a new tool, power fluctuations were much 
lower. This indicates that the worn tool has partially lost its 
ability to engage aggressively with the material. 

6 MONITORING EXTERNAL SENSORS SYSTEM 
 
The results discussed above, were necessary to lay the 
foundations of what will be the parameters to be monitored 
with the MADS system. MADS (Multi-Agent Distributed 
System for Monitoring and Control of Industrial Processes) 
[Bosetti 2024].  
 

 

Fig. 7: MADS system structure. 

Mads is an open-source system of TCP-networked agents 
implementable as monolithic processes (single specific 
task), or as plugins (source, filter or sink). Its structure is 
presented in Fig. 7. Sources are executables that grab data 
from the field and publish them to the broker; Filters are 
programs that receive data from other sources, process 
them, and publish the results to the broker; and Sinks are 
executables that receive data from the broker and process 
them locally. An agent called logger saves incoming data to 
a MongoDB database. 
 

6.1 MADS setup 

Experimental MADS monitoring setup as been developed 
in the laboratory and is suggested as a monitoring system 
solution. This setup is used to collect data on real-time 
external sensors and substitute the ones from the machine. 

 

Fig. 8: MADS setup and components. 

In Fig. 8, numbered elements (1–9) correspond to the 
described system components: 

1. Broker PC: Managing agent communication and 
system control; 

2. Raspberry Pi 4: Edge node for real-time signal and 
local data storage; 

3. Raspberry Pi Monitor: Live signal visualization; 
4. Arduino with Sensors: Gathers data and 

communicates with Raspberry Pi via serial; 
5. Machine Electrical Cabinet: Houses the sensors; 
6. Power Distribution Box: Supplies power to Arduino, 

Raspberry Pi, and peripherals; 
7. Portable Socket Strip: A flexible power source; 
8. Ethernet Cable: Enables low-latency communication; 
9. Tool Trolley: Organises the full system setup. 

For this research, accelerometers and SCT-013 current 
sensors were installed, but other types of sensors could be 
considered depending on the parameters to be monitored. 

 

6.2 Deployment of KPIs and Data Dashboard  

A significant advantage of MADS system is that the 
recorded signals can be continuously plotted in real-time 
using Python libraries, offering immediate insight into 
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current oscillations, peaks in power, or anomalous 
behaviours, issuing alerts if predefined limits are exceeded. 

For industrial applications, data dashboards (operator 
panels, quality control terminals, or factory dashboards) 
could display real-time or historical production data, aiming 
to improve decision-making. 

To support this objective, relevant KPIs (Key Performance 
Indicators) can be defined to track process performances. 

In this study, based on the results obtained during the 
experimental phase, a set of KPIs is proposed: 

- Cycle Time: Time required to complete one full 
machining cycle for process optimisation; 

- Power Thresholds: Instantaneous power monitoring; 
- Energy Thresholds: Accumulated energy consumption 

used to support efficiency and sustainability targets; 
- Spindle Load: Continuous monitoring of motor current 

to detect underload or overload states; 
- Cutting Force: Estimated using power data to track tool 

engagement and indicate wear. 

7 CONCLUSION 
 
Energy distribution analysis revealed that 79.1% of energy 
is consumed by non-cutting operations such as tool 
repositioning, spindle acceleration, and idle running. This 
highlights opportunities for energy-optimising strategies: 
reduce cutting velocity (𝑉𝑐) during non-cutting phases to 

lower spindle speeds and power consumption; increase 
spindle speed during cutting to match MRR and maintain 
productivity; increase feed rates in time-consuming cuts 
and reduce them during less demanding or idle phases; and 
smoothen acceleration/deceleration to avoid energy spikes. 
When tool wear is significant, lowering 𝑉𝑐  can reduce wear 

effects, extend tool life, and cut energy usage. 
 
This research highlights the need for deep data analysis to 
support modern machining monitoring systems. Real-time 
monitoring, KPI tracking, and adaptive process control 
enstabilish the proposed system as a powerful IIoT tool for 
both sustainability and productivity. 
 
Future work includes deploying MADS directly on 
production lines, integrating predictive models, enhancing 
sensor encapsulation, embedding edge intelligence, 
expanding sensor types, and programming MADS agents 
for advanced process interaction. This would also open up 
the possibility of comparing the results obtained in this 
study with those from a mass-production turning machine. 
The MADS solution can be applied across a wide range of 
machining processes, with multi-machine compatibility,  
offering a versatile step forward in real-time monitoring and 
Industry 4.0. 
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