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Abstract

In an era where industries are increasingly prioritizing sustainability and efficiency, optimizing
manufacturing processes is mandatory. Among these processes, lathe operations are widely used in
industry and consume significant amount of energy. This research investigates the monitoring of a turning
process, focusing on real-time data analysis with the final aim of achieving a more sustainable and energy
efficient machining process. Using an integrated agent framework for monitoring of machining outputs,
the machining parameters such as spindle speed, feed rate and depth of cut are optimized. A Multi-Agent
Distributed System (MADS) is created and implemented for real-time data acquisition, filtering, storage
and visualisation. Comprehensive analysis of energy consumption data during cutting intervals led to the
identification of energy distribution patterns and inefficiencies. Additionally, insights into the progression
of tool wear made it possible to identify consumption, specific to the cutting operations, in order to define
predictive maintenance strategies and thereby reducing operational downtime. The results are
contextualised with KPIs that provide information on process optimisation, including recommendations on
energy saving parameters and cost reduction opportunities, thereby enhancing decision-making in

machining operations.
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1 INTRODUCTION

Manufacturing plays a major role in industrial CO,
emissions and global energy consumption.. Recent studies
[Duflou 2012 et al.] emphasise that the sector accounts for
around 84% of industrial CO, emissions and over 50% of
global energy use, highlighting the need for adopting
sustainable practices. Improving energy efficiency in
machining, especially in turning processes, which are
widely used and energy intensive, is crucial for lowering
manufacturing costs and increasing sustainability. Despite
the potential of Industry 4.0, a 2020 global survey showed
that 52% of manufacturers lack the expertise and culture to
implement these technologies, and only 28% have done so
successfully [Liu 2022 et al.]. Accessible, modular solutions
like MADS can therefore support a smoother transition
toward digital and data-driven manufacturing.

This study reveals that a significant part of energy
consumption in turning operations derives not from the
cutting phases, but from non-cutting phases such as tool
repositioning, spindle acceleration, and idle periods. The
data collected from the industrial case study analysed in
this work show that cutting energy corresponds only to the
21.9% of the total energy consumption, highlighting the
potential to optimize the remaining 78.1%.

Moreover, although it is possible to lower the power
demand by lowering spindle speed and feed rate, it has
been observed that the total energy consumption may
increase due to longer machining times, suggesting the
necessity for selection of dynamic process parameters.
These results highlight the requirement for smart, real-time
control of machining settings to balance power demand,
production, and tool health.

The present study proposes the implementation of a Multi-
Agent Distributed System (MADS), as a real-time
monitoring system for industrial applications suitable for
turning operations monitoring. MADS enables real-time
monitoring, adaptive parameter control and facilitates data
acquisition, filtering, storage, and visualization, thus guiding
operators toward easier decision-making and leading to
improved energy efficiency and predictive maintenance
capabilities.

As adapted for turning processes, MADS is easy to set up
and offers accessible information, making it well-suited for
integration within production line monitoring systems in
manufacturing industries.

Experimental measurements conducted under varying
cutting conditions have shown that robust predictive models
for total machine energy consumption can be developed [Li
2011 et al.]. Recent studies on machinability in turning
processes [Ni 2023 et al.] confirm that cutting parameters,
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especially feed rate and depth of cut, significantly influence
cutting force, temperature, and energy usage, reinforcing
the importance of real-time parameter optimization.
Furthermore, to create cutting power-based energy
consumption models, it is necessary to precisely
differentiate idle and cutting power [Shi 2020 et al.]. These
models, by dynamically considering parameters such as
spindle speed and cutting power contributions,
demonstrate that flexible and accurate energy models lead
to superior results in modern machining analysis [Shi 2020
et al]. Easy access to a large amount of information,
increases process accuracy and energy efficiency [Xu 2018
etall].

A data-driven approach is essential for improving the
accuracy of energy analysis. In particular, it allows for the
separation of cutting energy from auxiliary consumption,
supporting more targeted process optimizations. This
methodology aligns with advanced studies in sustainable
manufacturing research [Shokravi 2022 et al.] [ Ragai 2022
et al], which highlight detailed mapping of energy
consumptions for customised optimisation solutions.

Additionally, by correlating energy consumption patterns
with tool wear progression, this study identifies
opportunities for predictive maintenance, increasingly
enabled by the use of machine learning and Artificial
Intelligence (Al) technologies. The relationship between
wear and energy consumption can be used to create
models useful for implementing real-time tool wear
monitoring, proactive maintenance planning and fulfulling
the objectives of reducing the incidence of unplanned
downtime and maximizing tool life [Wang 2022 et al.] [Pérez
2019 et al.]. This link has been supported by different
studies in which cutting energy distribution was successfully
used to predict wear volume and tool degradation over time
[Zhang 2016 et al.].

In addition, to improve energy performance, the system
supports predictive maintenance by detecting early signs of
tool wear and inefficiencies. MADS provides a modular,
scalable, and flexible solution that aligns with the goals of
intelligent manufacturing and supports the transition
towards Industry 4.0.

Advanced sensor technologies enable the real-time
monitoring and control that is required to optimize energy
consumption and ensure operational reliability over time
[Ibrahim 2024 et al.]. These technologies enhance energy
efficiency not only at the machine level but also throughout
whole industrial networks and supply chains by supporting
a multi-scale systems approach [Duflou 2012 et al.].

This research presents optimization strategies derived from
a real industrial case study, using key performance
indicators (KPIs) to enable real-time energy monitoring and
provide a practical, scalable solution. Overall, this work
represents an important step toward creating
manufacturing systems that are not only more energy-
efficient but also more responsive and adaptive to real-time
conditions.

2 ANALYTICAL MODELLING

In this section, the basic relations used during this study to
calculate the energy on the turning process are presented,
focusing on the interaction between cutting parameters and
their effect on power demand and energy usage.

2.1 Power Consumption during cutting

The instantaneous power required for material removal P,
(W), that is a function of time, is determined by the
interaction of cutting force F, (N), which acts in the direction
of cutting, and the cutting speed V. (m/min) [Ni 2023 et al.].
This relationship is given by Eq. (1):

F. V.

P = 60 1)

Increments in cutting force or cutting velocity directly affect
the power consumption. Power demand in cutting is also
related to the material removal rate MRR (mm?3min) and is
expressed, in cylindrical turning, as proportional to the
product of the depth of cut a, (mm), the feed f (mm) and
the cutting speed V¢ (m/min) [Groover 2013]:

MRR = a,f 1000 V¢ @)

Increasing any of these parameters results in a higher
MRR, leading to an improvement in productivity but also an
increase in the energy required for cutting. For an optimized
Vc (constant), spindle speed S (rpm) changes according to
cutting diameter (Di), Eq. (3):

__ 1000V
S==p 3)

2.2 Consumed Energy

The total energy consumed during a machining cycle,
E(t) (J), includes both productive (cutting) and non-
productive (auxiliary) phases. It is obtained by integrating
the instantaneous power P (W) over the entire process
time t, as shown in Eq. (4):

E(t) = f, P(x)dx 4)

This integral represents the cumulative energy drawn by the
machine throughout the process time t, including during
tool engagement, idle states, and transitions.

In order to identify the energy used only for material
removal, the cutting energy E.(t) is defined as the integral
of cutting power P, over the cutting period, when the tool is
in contact with the workpiece:

tcut

Ee(t) = [y, () dx (5)

Here, tcut, and tcut mark the start and end of the cutting
phase. Finally, the net cutting energy E,..(t) is introduced.
The objective of Eq. (6) is to isolate the energy used
exclusively for chip formation. To do so, it subtracts the
auxiliary power baseline P, (used for systems like coolant
pumps, spindle rotation during idle, tool movements and
control electronics) during the cutting period from the
cutting power P,:

Enet(8) = [ [Pe() = Par ()] () dx (6)
This net energy value reflects only the energy directly
contributing to chip formation, making it a more accurate
indicator to support sustainability and efficiency
evaluations.

2.3 Cutting Force Estimation
Cutting force F.(N) can be calculated using the
experimental cutting power, using Eq. (7):
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2.4 Specific Cutting Force Estimation

To evaluate mechanical efficiency, the specific cutting
force K. (N/mm?) is defined as the ratio between cutting
force F. and area of cut (depth of cut times feed f):

F,
K, = —¢
¢~ @h

®)

This parameter indicates the force which is required per unit
area of material being cut. The interdependence between
cutting parameters, force and energy reveals the
complexity of turning processes: interdependent and critical
for designing efficient, cost-effective, and sustainable
machining strategies. These models collectively enable
predictive analysis of tool behaviour and machining
performance.

3 EXPERIMENTS SETUP AND METHODOLOGY

An industrial case is used as a motivation for this study. The
results of these experiments will guide the development of
energy optimization strategies for turning processes, by
identifying opportunities to reduce energy consumption
while maintaining machining performance. The fundings
will be the inputs for the implemention of the monitoring
external system supported in this research.

3.1 Experimental Set-up

Turning operations were carried out on a Huron AX MSY
300 lathe. The tool used was an 80° diamond shape
double-sided, negative-style turning insert, with a chip
breaker designed for medium machining of steels, and with
a coated carbide for wear resistance. The insert was
mounted on a left-hand turning toolholder with a 20x20 mm
shank, with a 95° approach angle. Low alloy steel forged
industrial raw parts have been machined.

3.2 Methodology

During machining, the machine-tool was monitored and the
following parameters were recorded: active power,
programmed position and actual encoder position (X and Z)
and Z axis-load. The subsequent machining tests were
carried out on nine parts:

- Energy consumption using the original program (V¢ =
320 m/min is constant), at 50% and 100% feed to
verify that, as the work load reduced, the energy is
reduced,

- Power demand when machining at different spindle
speeds, as well as when the spindle was operated at
these speeds without material removal, to verify a,, and
f influence on the consumptions;

- Analysis of the power consumption evolution with
progressive tool wear;

- Reconduction of the Initial program monitoring with
worn tool.

4 ENERGY ANALYSIS ON TURNING PROCESS

In this section, a power and energy analysis was conducted
using the machine-tool data. The evaluation focuses on
distinguishing the energy used for actual material removal
from that consumed during auxiliary machine movements
or idle states when machining at 100% feed.

By isolating the cutting intervals, analysing energy
distribution, and comparing power usage with and without
active machining, the impact of process parameters on
overall energy demand is better understood.

4.1 Cutting intervals identification

The identification of the cutting intervals has been a crucial
step in our analyses. The power curve shown in Fig. 1, is
representing the power consumptions recorded while
machining one workpiece using the optimized program in
the industry (previous studies were developed to find the
optimal cutting speed that increases productivity and
reduces the tool wear).
Power vs. Time (Cutting Intervals Average Power)
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Fig. 1: Identification of cutting intervals and relative
average power consumption during machining

The portions of the curves coloured in green correspond the
cutting intervals, they were identified using the program
code. To estimate the power consumed only by the
material removal, the value of average power consumed by
auxiliary sources was subtracted from the overall average
value of each cutting interval sondidered.

4.2 Energy distribution
Absolute Energy vs Time (100% feed rate)
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Fig. 2: Energy consumption along the machining

Based on the power measured (Fig. 1), the consumed
energy during the machining program is calculated by
integrating the power consumed along the machining time
and the blue bands identify the different cutting stages (the
eight cutting phases in the program). The black curve on
Fig. 2 takes into consideration all the sources of energy
consumptions.

In this industrial case, the total energy consumed by the
process is 262 kJ. The red curve considers only the power
during the cutting stages, thus, it includes the cutting power
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and the other consumptions during cutting, and it sums up
to 55 kJ, which is 20.9% of the total energy. This shows that
there is a high portion of energy which could be optimised
and monitored.

4.3 Power consumption comparison: load and no-
load machining

Power consumption presented in Fig. 1 is compared with
the power consumption using the same program but when
the tool is charged on the skank but is not engaging in
cutting (air cutting). The energy consumed on the total
machining time in air cutting is 215 kJ. One can claim that
as only a small part of the energy (20%) is spent for cutting,
and that the two important sources of energy in air cutting
are: spindle speed (based on the optimized cutting speed)
and the energy used for fast movement and tool exchange.

5 EXPERIMENT RESULTS DISCUSSION

The main outcomes of the experimental investigation are
discussed in this section, focusing on how feed rate, spindle
speed, and tool wear influence power consumption and
energy usage.

5.1 Reduction of the feed rate

The impact of varying feed rates on power and energy
consumption was evaluated by comparing machining at
50% and 100% feed rates, as presented in Table 1.
Results prove that even if the average power is smaller
when machining at 50% feed rate, the total energy is higher
since machining time is increased. More energy is spent to
remove material and more energy is lost due to inefficiency.

Tab. 1: Comparison between 50% and 100% feed rate
machining processes parameters.

Parameters 100% Feed 50% Feed Comparison
Average N0,

Power (kW) 5 3 20%
Cutting o

Energy (kJ) 46 49 +6%
Non-Cutting o
Energy (kJ) 216 281 +23%
Average Feed o

rate Force (N) 1469 1058 -39%

Tab. 2: Fc and Kc in both cases (regular and 50%).

Cuttin fz (mm/rev) Kc
phaseg Ap(mm) Fc (N) (N/mm?)
5 1.725 0.47 17304 21354
5* 1.725 0.235 9176 22641

6 1.500 0.47 18110 25674
6* 1.500 0.235 9780 27752

7 1.475 0.35 17782 34453
7* 1.475 0.175 13528 52413

For Table 2, cutting force F, and specific cutting force K,
have been calculated for cutting intervals 5, 6 and 7 of the
machining programs.

Higher feed rate results in higher F, and K., which can be
used to estimate the efficiency of the cutting process.

5.2 Effect of spindle speed on power consumption
The program used during the experimental phase is
machining the workpiece at different diameters but at

constant cutting speed. Thus, the spindle must adjust its
spindle speeds every time.

In order to investigate the relation between spindle speeds
and power consumptions, before machining the pieces,
power data have been recorded only by rotating the turning
spindle at the same spindle speeds used in the machining
program. The spindle speeds (rpm) used in the program
were determined by applying Eqg. (3) as: 1652, 1750, 1845,
2383, 2515, 3395, and 5093.

Power Distribution Across Spindle Speeds
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Fig. 3: Power distribution of different spindle speeds.
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Fig. 4: Power harmonics across different spindle speeds

To simulate the same weight of the working piece during
the machining operation, one piece has been placed inside
the chuck, but no cutting or tool movement has been
performed.

In Fig. 3 it can be noticed that the dispersion of the scattered
points increases when the speed increases because of the
presence of higher oscillations. As shown in Fig. 4, the
power consumed is higher when we increase the spindle
speeds. After comparing the power consumptions obtained
by just moving the spindle, with the ones collected when
machining, the effect of different f and a, used in the
program is refected in the power values.
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5.3 Tool wear Analysis

During the wear test, after every machined piece, the tool
has been observed with microscope. The flank wear has
been measured and used to create a tool life curve.

t=33s w=0.4mm

t=137s w= 0.6 mm m t=174s w= 0.7 mm

Fig. 5: Cutting tool wear images.
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Fig. 6: Tool life curve.

Tool wear was evaluated by examining the cutting edge of
the insert. Five parts were machined, with material removal
gradually increased on the later parts to accelerate tool
wear. During the wear test, after every machined piece,
flank wear measurements were carried out using a
Keyence VHX microscope, the results are shown in Fig. 5.

The corresponding tool life curve, shown in Fig. 6, displays
an initial phase of rapid wear growth followed by the
beginning of a steady wear phase. As expected, the curve
has an initial phase of quick growth and a beginning of
steady phase. To create a more complete curve that
includes also a severe wear stage, additional passes
should be performed.

The last workpiece was machined using the industrial
program with a worn tool. Although total energy
consumption showed no significant increase compared to
machining with a new tool, power fluctuations were much
lower. This indicates that the worn tool has partially lost its
ability to engage aggressively with the material.

6 MONITORING EXTERNAL SENSORS SYSTEM

The results discussed above, were necessary to lay the
foundations of what will be the parameters to be monitored
with the MADS system. MADS (Multi-Agent Distributed
System for Monitoring and Control of Industrial Processes)
[Bosetti 2024].

Source \ Logger
[ Analog | l
Phl.:‘gin .
| Pogn | MongoDB

b Filter »— | Sink
/ 7 Broker y )
| Gu 2 ! Monitor |

| Piugin | | Piugin |

Fig. 7: MADS system structure.

Mads is an open-source system of TCP-networked agents
implementable as monolithic processes (single specific
task), or as plugins (source, filter or sink). Its structure is
presented in Fig. 7. Sources are executables that grab data
from the field and publish them to the broker; Filters are
programs that receive data from other sources, process
them, and publish the results to the broker; and Sinks are
executables that receive data from the broker and process
them locally. An agent called logger saves incoming data to
a MongoDB database.

6.1 MADS setup

Experimental MADS monitoring setup as been developed
in the laboratory and is suggested as a monitoring system
solution. This setup is used to collect data on real-time

external sensors and substitute the ones from the machine.
" , ,

Fig. 8: MADS setup and components.

In Fig. 8, numbered elements (1-9) correspond to the
described system components:

1. Broker PC: Managing agent communication and
system control;

2. Raspberry Pi 4: Edge node for real-time signal and

local data storage;

Raspberry Pi Monitor: Live signal visualization;

Arduino  with  Sensors: Gathers data and

communicates with Raspberry Pi via serial,

5. Machine Electrical Cabinet: Houses the sensors;

6. Power Distribution Box: Supplies power to Arduino,
Raspberry Pi, and peripherals;

7. Portable Socket Strip: A flexible power source;

8. Ethernet Cable: Enables low-latency communication;

9. Tool Trolley: Organises the full system setup.

For this research, accelerometers and SCT-013 current
sensors were installed, but other types of sensors could be
considered depending on the parameters to be monitored.

P

6.2 Deployment of KPIs and Data Dashboard

A significant advantage of MADS system is that the
recorded signals can be continuously plotted in real-time
using Python libraries, offering immediate insight into
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current oscillations, peaks in power, or anomalous
behaviours, issuing alerts if predefined limits are exceeded.

For industrial applications, data dashboards (operator
panels, quality control terminals, or factory dashboards)
could display real-time or historical production data, aiming
to improve decision-making.

To support this objective, relevant KPIs (Key Performance
Indicators) can be defined to track process performances.

In this study, based on the results obtained during the
experimental phase, a set of KPIs is proposed:

- Cycle Time: Time required to complete one full
machining cycle for process optimisation;

- Power Thresholds: Instantaneous power monitoring;

- Energy Thresholds: Accumulated energy consumption
used to support efficiency and sustainability targets;

- Spindle Load: Continuous monitoring of motor current
to detect underload or overload states;

- Cutting Force: Estimated using power data to track tool
engagement and indicate wear.

7 CONCLUSION

Energy distribution analysis revealed that 79.1% of energy
is consumed by non-cutting operations such as tool
repositioning, spindle acceleration, and idle running. This
highlights opportunities for energy-optimising strategies:
reduce cutting velocity (Vc) during non-cutting phases to
lower spindle speeds and power consumption; increase
spindle speed during cutting to match MRR and maintain
productivity; increase feed rates in time-consuming cuts
and reduce them during less demanding or idle phases; and
smoothen acceleration/deceleration to avoid energy spikes.
When tool wear is significant, lowering V¢ can reduce wear
effects, extend tool life, and cut energy usage.

This research highlights the need for deep data analysis to
support modern machining monitoring systems. Real-time
monitoring, KPI tracking, and adaptive process control
enstabilish the proposed system as a powerful Il0T tool for
both sustainability and productivity.

Future work includes deploying MADS directly on
production lines, integrating predictive models, enhancing
sensor encapsulation, embedding edge intelligence,
expanding sensor types, and programming MADS agents
for advanced process interaction. This would also open up
the possibility of comparing the results obtained in this
study with those from a mass-production turning machine.
The MADS solution can be applied across a wide range of
machining processes, with multi-machine compatibility,
offering a versatile step forward in real-time monitoring and
Industry 4.0.
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