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ABSTRACT
As lightweight materials with enhanced mechanical and
tribological properties, aluminum metal matrix composites, or
AMMCs, are attracting more and more attention. This work
used the stir-casting process to reinforce Al 6063 alloy with rare
earth oxide (LaOs) and alumina (AlOs) to create a hybrid AMMC.
A consistent distribution of reinforcements inside the matrix
was verified by SEM and EDS investigation. The composite's
machinability was further examined using electro discharge
machining (EDM), in which the rate of material removal (MRR)
and wear rate of the cutting tool (TWR) were maximized by
optimizing the input parameters of current, trigger on (Ton),
and trigger off (Toff). Box-Behnken Design (BBD) was used to
arrange the experimental trials, and mean effect and signal-to-
noise ratio (S/N) diagrams were used to assess the data.
Subjective weight allocation techniques were combined with
multi-criteria decision-making (MCDM) techniques, specifically
MABAC and MOORA, to attain a balanced trade-off between
MRR and TWR. 9 A current, Ton of 5, and Toff of 4 were found
to be the ideal parameter settings, guaranteeing increased
machining efficiency with no tool deterioration. The results
demonstrate the potential of hybrid AMMCs supplemented
with rare earth elements in applications that demand enhanced
machinability and structural dependability.

Keywords: MCDM, ALUMINIUM COMPOSITES, DRILLING,
MACHINING, OPTIMIZATION

1 INTRODUCTION

Polymer composites, such as glass-fibre reinforced composites
and phenolic-resin asbestos, garnered a lot of attention from
researchers at the turn of the 20th century. However, because
of their poor strength and extreme heat sensitivity, their
application in the aerospace and defence industries was
restricted. The creation of metal matrix composites (MMCs),
which had the benefit of being stronger than polymer
composites and lighter than basic metals or alloys, was
prompted by the space race between superpowers in the 1970s
[1]. In the age of globalization, engineers are constantly looking
for stronger, lighter, and more affordable materials, which is
driving up demand for cutting-edge technologies and materials.
Superior mechanical, thermal, and electrical qualities, along
with increased resistance to radiation, moisture, severe
temperatures, and vacuum outgassing, are how MMCs satisfy
these demands. MMCs consist of a minimum of one metal
serving as the matrix, with a ceramic, an organic or inorganic
compound, or another metal serving as the secondary
component [1]. The automotive industry is increasingly using
these composite materials for lightweight components since
they are stronger and lighter than conventional materials like
steel [2]. Higher physical strength with reduced thermal
expansion and notable resistance to thermal forces, remarkable
wear resistance, specific stiffness, and robust corrosion
resistance are what make MMCs unique [3. 4]. Light metals like
titanium (Ti), magnesium (Mg), and aluminum (Al) are examples
of common matrix materials. The uniqueness of high strength-
to-weight ratio, affordability, ease of processing, corrosion
resistance, and lightweight nature, aluminum and its alloys are
especially preferred. Because of their increased hardness with
decreased ductility when ceramic particles are added to the
base metal matrix—aluminum matrix composites, or AMCs, are
gradually taking the place of cast iron in automotive parts [5].
Particle-reinforced composites are the subject of current
research, particularly those that contain rare earth elements
and oxides (REEs/REOs), which are well-known for their
accessibility, affordability, and ease of dispersion, leading to
uniform distribution throughout the matrix. The composite's
intended purpose determines which reinforcement materials
are used. Lightweight metal reinforcement creates new
opportunities for applications where weight reduction is
essential.

Aluminum matrices are frequently reinforced with Al,03 [6, 7],
Zr02 [8], Si02/Ti02, Si3N4 [9], TiC [10], SiC [11], B4C [12, 13],
TiB, carbon nanotubes (CNTs), and diamond to improve their
mechanical and tribological qualities. Interest in hybrid MMCs
has increased in recent years. The 15 lanthanides (atomic
numbers 57-71), yttrium (39) and scandium (21), are examples
of rare earth elements that are widely utilized in the chemical,
metallurgical, pharmaceutical, and oil refining sectors. Their use
has grown to include permanent magnets, glass polishing, and
electronic devices, frequently including aluminum oxide (Al,03).
A nonconventional machining technique called electrical
discharge machining (EDM) can be used to produce intricate
profiles on hard conductive materials. In EDM, a succession of
distinct discharges between a workpiece (anode) and a wire
tool (cathode), separated by a dielectric fluid, are used to
accomplish machining [14]. Because of their mechanical
qualities and tolerance to high temperatures, aluminum alloys
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reinforced with TiC and SiC particles are extensively utilized in
the automotive and aerospace industries. However, the high
cost of manufacture, which is mostly caused by severe tool
wear during machining due to the abrasive character of the
workpiece, frequently limits the full potential of MMCs.
According to Velusamy et al., EDM is a better technique for
accurate material removal because traditional machining of
MMCs is difficult because of the abrasive particles that wear
out the tool [15].

Finding the ideal parameter combinations to enhance results
like quality and efficiency is referred to as optimization in this
context [16]. The correlations between input and output
parameters are evaluated using various statistical analytic
techniques such as Response Surface Methodology (RSM), and
many more. the Taguchi method is a popular technique for
designing experiments (DoE) that effectively tests different
factor levels while reducing the number of experiments.
Multiple response parameters are converted into single-
response values for prioritization wusing multi-response
optimization techniques such as Weighted-Grey Relational
Analysis (WGRA) and various other techniques. Using a variety
of factors, these tools assist in determining the optimal
solutions [14].

According to Mohan et al., a larger volume % of SiC has a
negative influence on MRR but a good impact on TWR and
surface roughness (SR), but a higher discharge current increases
the material removal rate (MRR) [17]. The results of Sivasankar
et al. showed that employing entropy-based GRA during the
EDM of hot-pressed ZrB2 increased machining performance
measures, such as weight-to-wear ratio, TWR, MRR, and taper
angle [18]. The effects of input parameters on SR, TWR, and
MRR in AISI D2 tool steel during EDM were investigated by
Majhi et al [19]. using entropy and GRA approaches. Kumar et
al. discovered that while longer Ton and greater pulse duty
factor have a detrimental effect on EWR but improve surface
roughness, increasing current increases spark energy and
electrode wear rate (EWR). When milling Al-Cu-TiB2, the
TOPSIS approach was employed for multi-objective
optimization in order to determine the best parameter values.
ANOVA and GRA were coupled in other research, such as one
on microwire EDM, to improve multi-performance metrics [20,
21]. In order to optimize input and output parameters in
Al/SiC/Gr hybrid composites, GRA as well as TOPSIS were also
utilized for EDM of powder-mixed H-11 die steel [22]. It was
determined that feed rate, cutting speed, and depth of cut had
the greatest effects on SR Using GRA, TOPSIS, and RSA models,
titanium alloy milling under low lubrication circumstances
demonstrated how cutting parameters affected flank wear and
SR [23]. While another study used a combined Taguchi-GRA-
weight method to optimize wear rate chractarestics in
AA6063/SiCp material, identifying SiCp weight percentage,
load, and sliding distance as critical factors [24]. Gopal et al.
used Taguchi's equiped with GRA for determining critical
factors effecting Sr and MRR in a hybrid Mg MMC. Taguchi-
based PCA in conjunction with GRA was used to maximize MRR
and minimize SR. For multi-objective optimization, where the
conventional Taguchi method by itself was inadequate, the
Taguchi-GRA approach proved to be successful [25]. In order to
enhance output quality, this method was utilized to optimize
WEDM input parameters such as Ton, Toff, WF, SV, WT, and IP.
The ideal kerf width (229 mm) and SR (2.187 mm) for hybrid
MMC machining by wire EDM were determined. Ghadai used
various MCDM techques for the parametric optimization of end
milling process of Al1070. [20].

A survey of the literature shows that although a number of
research teams have created AMMCs with reinforcements like
LaO; and AlOs, less focus has been placed on employing MCDM
approaches to assess their machining performance.

Therefore, in the present research work the below mentioned
points were addressed:

1. Hybrid AMMCs is developed with base Aluminium alloy Al
6063 incorporated with rare earth elements (La;Os) and Al,03
using stir casting process

2. The developed hybrid AMMC composite were further
analysed at nano level using morphological tests.

3. The machining of developed Hybrid AMMCs were carried
out using Electro Discharge machine (EDM).

4. Optimization of EDM parameters using MABAC and MOORA
MCDM technique.

2 DEVELOPMENT AND CHARACTERIZATION OF RARE EARTH
REINFORCED AMMC:

2.1 AMMC Development details

The AMMC is developed using Al 6063 (Zn- 0.005, Si- 0.525,
Mn- 0.07, Cr- 0.01, Mg- 0.466, Al- 98.627, Cu- 0.27, Ti- 0.025,
Fe- 0.161) mixed with Al,0; and La;0s. Two distinct furnaces
are used in the development of the hybrid AMMC: (i) stir
casting apparatus for converting to liquid form and (ii) and a
muffle furnace for pre-heating. In the furnace, a predetermined
weight percentage of reinforcement is heated for one to two
hours at temperatures between 150 and 300 °C. To eliminate
any moisture content, the reinforcements are preheated within
a muffle furnace. Al,O3 and La,03 were the reinforcements that
were utilized. The AMMC was created using weight
percentages of 1.5% for La,03 and 5% for AL,03. The
reinforcement particle size (average) were in the range of 5 to
25 pm with 99.5% purity. At the same time, the mold is heated
to about 350 ?C while the crucible placed in stir casting
equipment is heated above solidofication temperature of
aluminum, which is 780 *C. The aluminum specimen is put into
the crucible and left there until it liquefies, at which point the
reinforcement is added gradually with a spoon once the base
metal is converted to liquid form. To ensure homogeneous
mixing of the reinforcement, the mixture was agitated for eight
minutes within the crucible using an HSS stirrer set to 650 rpm
after the reinforcement was added to the molten Al 6061. After
stirring process, the AMMC was sent to the heated mold,
where solidification took palce and was recovered after roughly
seven to eight hours.

2.2. Characterization of Developed AMMC.

Scanning Electron Microscope (SEM) with model id as EVO
MA18 fitted with Oxford Energy-dispersive X-ray spectroscopy
(EDS) for elemental composition investigation, the morphology
of a cut slice of rare earth reinforced AMMC was assessed.
Similarly, Oxford Instrument's MFP 3D Origin model was used
to assess the morphology corresponding to cut section of the
generated matrix composite through Atomic Force Microscopy
(Asylum Research). The projected image surface size varied
between 9.00 and 9.52 um2, and images were taken with a
scanning rate of 1.00 Hz and a scanning range of 3 3 um2.
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Figure 1. Stir Casting Apparatus

Figure 2. Muffle Furnace

2.3. Non-conventional Electro discharge machining of AMMC
Using pulsating electrical sparks driven by a D.C. input, the
cutting tool and workplate serve as electrodes in the
unconventional process termed as EDM, which removes
material. The workpiece material is melted and vaporized for
removal by the extreme heat produced by these sparks. In the
hybrid aluminum metal matrix composites (HAMMC) EDM
experiment, the workpiece was made of AI6063 as the base
metal and reinforced with 2% La;03 and 5% Al,0s. Kerosene as
dielectric fluid during machining along with the tool (copper
made), and the workpiece were immersed in it. EDM has
benefits include hardness insensitivity, the ability to
manufacture intricate structures without causing damage, and
non-contact material removal. Its drawbacks, however, include
crater-marked surfaces and slow machining speeds. The goal of
research is to better understand the physics of EDM to increase
its stability and efficiency. Three phases are identified by Erden
et al. for the removal of EDM material: surface erosion, the
development of strong electrostatic forces, and dielectric
breakdown.

2.4 Weight Allocation Strategies
2.4.1 Standard Deviation Method (SDM)

An established technique for allocating weights to evaluate
criteria is the SDM, which uses the standard deviation between
performance values across various alternatives to do so. The
steps involved under SDM are as follows:

Normalization of the decision matrix using the formula: -

ay —b

(1)

where b; : best alternative and w; : worst alternative.
The standard deviation for weight allocations is evaluated:

Ny =
b —w

g =std(N) = Jﬁ By (=) )

Weights are evaluated through eq. 3 mentioned below:

q; .
W= J=1L (3)
Zie=1 Qi
2.4.2 Criteria Importance Through Inter-criteria

Correlation (CRITIC) method

The CRITIC approach is basically a weight allocation driven
technique which assigns weights to criteria based on the
correlation between various criteria. The following are the
steps in this procedure. [17]. In order to compute a normalized
deviation matrix N, the best and worst performnce value of bJ-
and w; respectively under all criterion are determined using the
formula below.

_oy—b
ny = b} “w, (PR ¢ )

Column wise Standard deviation calculated as

s=stdW) = |== Ty (ny —7) e (5)

Pearson correlation coefficient (equation mentioned below) is
used to evaluate Linear correlation between columns of N is
given by

Py (nl}' - ﬁj)(nik — )
ity (v~ 1) Ty (e~ T)?
The criteria j (g_j) which creates conflict is evaluated and is

considered to be the key indicator to assign weights to
evaluation criteria.

Cjie = corr(N) = Jk=1,..n. ..(6)

q,=5" Z (T—ep)i=1 . me (D)
k=1
Weights are determined as
a;
J=1 M e (8)
! EE:I qr

2.5. MABAC

MABAC, was developed by, D Pamucar & G. Cirovic [26] and has
subsequently been applied extensively to address a variety of
real-world issues. MABAC offers a number of important
benefits that make it dependable and efficient. Even when the
qualifying values' units of measurement change, the MABAC
approach consistently produces reliable findings. This implies
that regardless of the units chosen, the results remain
consistent and trustworthy. When criteria changes, such as
when a criterion shifts from a benefit to a cost, the MABAC
approach stays constant. For MCDM processes with numerous
criteria and alternatives, the MABAC approach has an algorithm
that works well and maintains the integrity of the findings [27].
It can be applied to various domains of MCDM situations and
has extensive applicability. It is an effective and useful
instrument to apply in MCDM procedures because its
mathematical formulas are straightforward and controllable
regardless of the quantity of options and criteria [27].

Step 1: Determining the decision matrix like all other MCDM
techniques.

Step 2: Normalization of the decision matrix is done using the
following equations
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ty = JC:: — Ilf_;j IS SR )|
L
Xy — x5

ty :W;J S - e— (1)

+ + .
Where xi and %" are highest and lowest values of observed
criterion in decision matrix.

Step 3: Weighted normalized matrix is evaluated :

V= [vu] = Wy by W ...(11)

Step 4: determmatlon of Border approx|mat|on area matrix :

m 1/m
G= [gf]m,;g; =(l_[171')) (12)

j=1
Step 5: calculation of distance of all alternatives from border
approximation area :

0=V =6 (13)

Here, matrix V and G already defined in Step 3 and 4.
Step 6: detremination of Criterion function using the equation
mentioned below :

Si= iq,} e (149)

Ranking of alternatives are carried out in descending order of
the criterion function. i.e criterion function with maximum
value is to be ranked 1.

2.6 MOORA Method

MOORA is a successful MCDM/MODM technique that was first
presented by Brauers and Zavadskas [28]. It is intended to
address complicated, multi-objective, and frequently
contradictory issues. In MOORA method, the normalized values
of the benefit criterion are added, and the normalized values of
the cost criteria are subtracted, to determine the ratio system.
With the highest score indicating the top ranking, and so forth,
this mathematical solution provides us with the score for each

choice [29]. The MOORA method is a straightforward, but
efficient MCDM procedure that can be employed in different
domains. By normalizing the results, it guarantees consistency
and makes comparing and evaluating each criterion simple [30,
31].

The process for making decisions using the MOORA method is
mentioned in steps discussed below:

Step 1: Creation of decision matrix during this step, the criteria
values are transformed into a decision matrix.

X Xz Xy
Xa1 Xa2 v Xgj

[X] = cr ceren wen wnn e eee ( 15))
Yo X o X

Step 2: decision matrix normalization in the MOORA method
aims to standardize all element values within the matrix. The
formula used for normalization is as follows:
s _ M
= (15
Ei:i’ﬁ'j

Step 3: Calculating the optimized attribute values involves
multiplying the corresponding elements from the decision
matrix. This optimization process is computed based on
equation:

g n
i=1 I=g+1

Step 4: Ranking is accomplished by sorting the ¥; values, where
¥; represents the optimized values of alternatives, allowing
identification of the best alternative.

Table 1. Experimental Data

- 5 3 0.0003567 0.0004167
- 12 9 3 0.0000367 0.0002900
- 12 5 5 0.0000533 0.0000967
- 12 9 5 0.0000333 0.0003267
- 15 7 5 0.0000267 0.0002600
- 9 7 5 0.0000167 0.0002900
- 15 7 3 0.0000200 0.0003967
- 15 9 4 0.0000133 0.0003400
- 9 7 3 0.0000267 0.0002300
- 12 7 4 0.0000133 0.0003933
- 12 7 4 0.0000133 0.0001267
- 15 5 4 0.0000167 0.0000400
- 9 9 4 0.0000400 0.0003133
- 12 7 4 0.0000067 0.0003800
- 9 5 4 0.0000467 0.0001033

3 RESULTS AND DISCUSSION
3.1 Morphology and Composition of Developed AMMC

Figures 2-4 (5% Al,0; 1.5% La,03) respectively, display the
morphology of La,Os; and Al,Os intigrated AMMC. Figures 5
display the findings of the EDS analysis and SEM images. Tables
2, show the equivalent weight percentage of additional
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reinforcement in the Al 6063 base alloy. SEM micrographs
make it evident that tiny reinforcing particles are dispersed
haphazardly across the Al 6063 alloy's surface. However, it is to
nate that the mixing of reinforcements have been carried out in
powder form after succesful preheating in the furnace. From
the SEM images it can be seen that the structure of the

B8

it
Signal A= SE1

reinforcements is close to globular form and the same is
evident from the EDS data which shows the presence of La;03
and Al,O3 present in weight percentage, which is consistent
with the SEM findings.

&
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Figure 2-4. SEM images of Al6063 (5% Al,03 1.5% La,0s3) Figure 5: EDS graph

121 2.02 126.10
[TAKT 9833 97.89 34345.18
[E  o04s 0.09 22.56

Table 2. Al 6063 (5% Al;03 2 % La;03)

3.2 Optimization of Machining Parameters.

A border approximation approach as discussed in an earlier
section is adopted to rank the alternatives from best to worst
using MABAC method. Normalization of the decision matrix is
done using eq. 9 and eq. 10. Three different weight allocations
are adopted to minimize the decision maker’s biases in weight
allocation process. The weights as per standard deviation were
0.5673 and 0.4327 and CRITIC allocates 0.461 and 0.539 to MRR
and TWR respectively. These weights along with Mean Weights
were introduced into the rank calculating process using MABAC
method to calculate three different weighted normalized
decision matrixes using eq. 11. Border approximation area is
calculated for each criterion from the weighted normalized

matrix using eq. 12 and the distance from this area is calculated
for each alternative. These distances are summed up across all
criteria to arrive at a performance score for each alternative.
This is used to rank alternatives in descending order of the
performance score. The ranks are plotted against experiment
no. to arrive at the graph shown in fig.6 below.

Similarly, the MOORA method was also used to rank the
alternatives and cross-validate the MCDM ranks obtained using
MOORA method. The normalization of the decision matrix is
done using eq. 16 and the difference between beneficial and
cost criteria is calculated as the performance score using eq. 17
which is used to rank the alternatives. A significant degree of
overlap in ranks obtained using both the techniques can be
seen from fig. 6. Pearson correlation coefficients were
calculated using the formula shown in equation 18 to obtain
the correlation plot shown in fig. 7.

r= E(xi_f)(yi_}_’) (18)
T
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It can be seen from the figure that there is very little deviation
among different techniques used. This suggests that the ranks
obtained are reliable and consistent across different techniques
used. This validates the ranks obtained using MCDM
techniques. It is also interesting to note

that intermediate values of Current on time, current off time
and current intensity results in the best compromise between
MRR and TWR while high input values of current on time
resulted in the most significant deterioration in the optimal
compromise between the two output responses considered.

-
=]

. -
=] Y

(=]

Ranks Obtained
o o

&

2
ExparimantNumbgr 1|2 |3|4|5|6|7 (8|9 |10]|11|12|13(14[15
—— MABAC 1418 |13|5 |9 |6 |2 |4 |10(1|11|15| 73|12
——MABACSTDEV |14 8 |13[5 |9 |6 |2 |4 [10|1|1|15|7 |3 |12
MABACCRITIC (15| 8 |13|5 | 9|6 |3 |4 |10 1|14 7|2]|12
== MOORA 159 |14|6 |8 |5 |3 |4|10(2)|1112)7 (1|13
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Figure 6. Ranks Matrix depicting variation of ranks for different
experimantal runs.
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Figure 7. Correlation plot between ranks obtained using all
MCDM techniques.

4 CONCLUSION

Using Al6063 as the matrix material and La;Os and Al,Os3 as
reinforcements, the current study primarily focuses on the
development and machining optimization of hybrid AMMC. Stir
casting was used for development, and the metal matrix

composite's morphological and structural analysis utilizing SEM,
showed that reinforcements had been successfully included. In
order to optimize MRR and surface roughness, the created
composite was machined using a Electro discharge machining
that followed the BBD design of experiments. To determine the
best compromise between tool wear rate and MRR,
experimental trails were ranked using two distinct MCDM
techniques. One can infer the following conclusion through
present work: SEM results indicated small size particles of
reinforcement randomly distributed over the surface of Al 6063
alloy and EDS results indicated lower wt.% of La;03 and Al,Os.
Strong consistency amongst the used MCDM approaches was
found through statistical evaluation of ranking patterns. A high
degree of agreement was indicated by the Spearman rank
correlation coefficients between MABAC and MOORA across
various weighting techniques, which were determined to be
between 0.96 and 1.00. The robustness of the optimization
framework was further demonstrated by the heatmap (Fig. 2),
which further proved that the correlation between approaches
was over 0.95. Additionally, rank stability study revealed that
CRITIC offered more precise alternative discrimination while
Standard Deviation-based weighting reduced variations among
experiments. These findings support the validity of utilizing a
variety of MCDM approaches as opposed to depending just on
one.

Using mean weights, SDM weights, and CRITIC weights, MABAC
and MOORA MCDM strategies indicated that the best
compromise in tool wear and MRR could be achieved by
selecting a machining condition of 9 A current, 5 trigger on, and
4 trigger off. This was a dominant optimal solution consistently
across all six combinations of weight allocation methods and
MCDM methods examined in the current work.
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