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Abstract

Due to rising costs and the need for a more sustainable use of resources, there is an increasing focus on
energy use in industrial production. As a result, energy-related data, for example from machine tools, is
increasingly being collected. In addition to information for the energy evaluation of individual systems and
processes, load profiles of machine tools offer further opportunities for process monitoring, such as
tracking of production lots. As sensors for electrical power monitoring can be retrofitted without interfering
with the process or the machine control unit, load profiles offer a cost-effective data source for data mining
and machine learning applications. In order to support the generalisability of such applications, this paper
describes the load profiles of machine tools and presents an overview on characteristics and the variety
of load profiles of turning, grinding and milling machines in industrial use cases. Load profiles of 18
machine tools from machinery, automotive and aerospace production were analysed with regard to
statistical characteristics during machining cycles. In particular, typical value ranges and statistical figures

of load profiles and the influence of the sampling rate on the time series are presented.
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1 INTRODUCTION

As it is estimated that machine tools account for 5-10% of
the global electrical energy demand of the metal-working
industry [Denkena 2020], the evaluation of the energy-
related data of machine tools is a relevant aspect of the
transformation towards a more sustainable industry.

In addition, energy-related data from machine tools is a
useful source of data to obtain information about processes.
Previous work has shown that electrical load profiles of
machine tools or machine components can be used for
various applications. If energy-related data, such as the
current of the spindle of a turning machine, is available at
high frequency, it can be used to identify faulty workpieces
during machining [Fertig 2020]. On the other hand, the load
profile of a machine makes it possible to predict indicators
such as machine overall equipment effectiveness (OEE) by
utilising this data source [Thiede 2023]. Furthermore,
approaches for segmenting the load profile offer the
possibility of determining individual machine operations
based on the load profile [Seevers 2019] or assigning the
machining cycles of different manufacturing orders
[Wachter 2023]. One obstacle to fully utilising the
information potential of load profiles is the effort and expert
knowledge required to interpret the data [Teiwes 2018].

This paper is intended to create a data basis for the
development of automated approaches for the

interpretation of load profile data. To this end, this paper
describes various characteristics and value ranges that
have been observed in the load profiles of machine tools.
The evaluation and description include sections in which
machining takes place on the machine. The examples
presented are machines that can be categorised as milling,
turning and grinding machines based on their main
manufacturing technology. In terms of the degree of
automation, all machines are classified according to
[Hirsch 2022] as machining centres, which can perform
other technologies in addition to the main production
technology and have an automatic tool change and partially
automatic workpiece change. The focus of the description
in this paper is on load profiles with a time resolution of
1 sps (samples per second), as this appears to be suitable
and widespread in practice. In addition, the effect of a
reduced sampling rate on the load profile of machine tools
is discussed and illustrated using the example of a rotary
grinding machine.

2 BACKGROUND:
MACHINE TOOLS
The electrical load profile, hereinafter referred to simply as

the load profile, refers to the electrical power drawn at the
mains connection point of the machine.

LOAD PROFILES OF
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A machine tool usually consists of different components
that are supplied with electrical energy - for example feed
and spindle drives, cooling systems, hydraulic and lubricant
pumps, control units, etc. [Hirsch 2022]. The power drawn
at the mains connection of the machine is the cumulation of
the individual power demand of these components
[ISO 14955-1].

Of the total electrical energy demand of a machine tool, the
largest shares are accounted for by cooling, cutting fluid
supply, the hydraulic unit and the drives [Denkena 2020].
However, the share of the total electrical energy demand
does not allow any general conclusions to be drawn about
the load characteristics of the respective components. The
load characteristics of individual components can be
described either as constant, e.g. for control units, cyclical,
e.g. for cooling units, or variable, e.g. for the main spindle
[Abele 2012]. Denkena et al. describe the load
characteristics of spindles with a short peak peak at the
start of an operation followed by an interval of constantly
increased load [Denkena 2020]. As a result of rapid
positioning operations and hereby acceleration of axis and
spindles, short duration peak loads of high amplitudes
occur. Deceleration of axis and spindles drives also leads
to negative peak loads at the mains connection
[Dietmair 2009]. The load behaviour of cooling units with 2-
point control is described with a constantly increased base
load and cyclically higher load blocks. The characteristics
of high-pressure cooling lubricant pumps are also described
with a base load and blocks of higher load, whereby the
blocks are variable in size [Denkena 2020]. Eisele et al.
show that the load behaviour of an investigated centrifugal
pump can also exhibit short, smaller peak loads in addition
to a base load if a higher volume flow is required from the
machine for a short time [Eisele 2011].

In general terms, the load profile of machine tools is
described in technical standards such as VDMA 34179 and
ISO 14955-1. These differentiate between different energy
modes — such as off, standby, ramp up, warm up, ready for
operation, processing [ISO 14955-1, VDMA 34179]. These
modes represent specific constellations of component
activation: e.g. Standby may involve active control units and
cooling circuits, while other systems remain off. As a result,
different operating states are characterized by
distinguishable electrical signatures in the load profile, as
shown by findings in various studies [Dietrich 2020,
Dehning 2019, Suwa 2016].

In this context, machining cycles can be interpreted as
structured sequences of power pattern, that correspond to
physical process stages. This is reflected in the work of
Schraml, who identifies typical sequences consisting of
spindle acceleration, cutting engagement and idle or
transitional phases, each defined by characteristic load
levels and temporal profiles [Schraml 2018]. Some
preliminary work gives value ranges for the length in time
or the observed mean power for the different sections.
Suwa et al. report cutting times between 6 and 8 minutes
for turning operations [Suwa 2016], while Dietrich et al.
describe durations for machining cycles from 66 to 354
seconds [Dietrich 2020]. Schraml also describes durations
of the individual sections ranging from a few seconds for
e.g. spindle speed-up to several minutes for main cutting or
idle phases [Schraml 2018].

Previous studies that process load profile data mostly rely
on time series with a sampling rate of 1 sps (samples per
second) or aggregation rates of 1s, which has proven
sufficient to distinguish energy states at the machine level
[Liebl 2018, Teiwes 2018, Dietrich 2020, Dehning 2019].

High-frequency data is associated with higher costs for

collecting and processing the data. Therefore, a
compromise must be made when selecting the appropriate
resolution of load profile data in an industrial context
[Labbus 2019]. Accordingly, coarser resolutions, such as
average values over 15-minute intervals, are also common
at factory level [Dehning 2019, Walser 2021]. These are
often based on billing purposes associated with the energy
supply [Thiede 2012].

3 INFLUENCE OF SAMPLING RATE ON THE
DETECTION OF PEAK LOADS

The appearance of load profiles in machine tools relies on
the sampling rate of the measurement system. In this
context, the number and magnitude of recorded load peaks
are significantly influenced by the sampling rate. Initial
measurements were conducted with a sensor system
operating at a sampling rate of 10 sps, aggregated to 1 s,
on the direct current (DC) side of the intermediate circuit of
a tool machine. It was observed that both the number and
the height of the recorded load peaks varied when the same
machining program was recorded multiple times. This
indicates that with a low sampling rate, peak loads may be
represented differently from the real occurrence in the
recorded time series.

In order to record the actual course of load peaks of
machine tools, literature also suggests a minimum sampling
rate of 40 sps since the peak loads have a duration of
approximately 50 ms [Menz 2017]. To address this issue, in
the scenario described above, additional sensors capable
of sampling current and voltage at a rate of 500 sps were
installed on the DC side of a machine tool. A comparison of
load profiles recorded simultaneously with both, 10 sps
aggregated with 1 s and 500 sps, showed that the higher
sampling rate enabled the detection of more and higher
load peaks (see Fig. 1).

The impact of varying the sampling rate was further

examined by gradually reducing the sampling rate, starting
at 500 sps. For the vertical grinding machining center under
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Fig. 1: Load curve of a machine tool during operation with
1 s (top) and 500 sps (bottom) aggregation/sampling rate
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consideration a threshold was determined, at which load
peaks start to diminish or disappear. The analysis revealed
that peak load disappearance started to occur at
approximately 170 sps, where the peak magnitudes first
showed a reduction of less than 1%. More substantial
losses, exceeding 10%, along with the complete
disappearance of single peaks, were observed at sampling
rates of 10 sps and below.

In industrial energy monitoring applications, temporal
resolutions with aggregation periods of between 1 second
and 15 minutes are common, although longer or shorter
periods are occasionally found. Longer aggregation
intervals of 1 h or more are more likely to be found when
analysing the load profiles of entire buildings, whereas a
aggregation period of 15 minutes is based on billing
purposes. A data resolution of at least 0,1 sps is also
recommended in the literature for analysing individual
devices with dynamic clocking or load changes
[Thiede 2012].

When analysing load profiles, taking into account the
sampling rate, a distinction must be made between the
sampling rate and the aggregation rate of the time series.
The distinction concerns whether discrete sample values
are present in the time series or whether several samples
are aggregated to one value in the time series over an
aggregation interval [Proakis 2007]. In this paper for clear
differentiation the following definition is applied. The
sampling rate is the frequency at which a continuous
variable such as electrical power is sampled in discrete
steps [Oppenheim 2013]. This is specified in samples per
second (sps). Aggregated values are specified in the
aggregation interval, e.g. in seconds. In commercially
available data recorders for energy monitoring, electrical
values are sampled at 26 ksps, for example [Emonio 2025].
The measured values are averaged over the set temporal
measurement resolution, which corresponds to the
aggregation rate, and saved as a time series value. In this
example, with a temporal resolution of 0,1 s, each value of
the load profile can be interpreted as the average of 2600
sampled values. Such downsampling has the effect of a
moving average processing on the time series, so that load
peaks appear as smoothed elevations. When interpreting
aggregated data, it should be noted that the temporal
resolution of the time series should already be understood
as pre-filtering.

4 DESCRIPTION OF THE DATA SET

In order to provide an exemplary overview of the
characteristic values found in the load profiles of metal-
cutting machine tools, these are presented below.

4.1 Description of the machines considered

In the following description, nine machines are considered
and each named with an identifier IDm. These are listed in
Tab. 1. The machines considered operate in an industrial
application in machinery and equipment engineering,
automotive industry, aerospace supply industry or research
facilities. The machines are categorised by type according
to their main manufacturing technologies milling (M),
turning (T) and grinding (G). The milling and turning
machines in question are machining centres that can
perform other machining technologies in addition to the
main technology and that have an automatic tool changer.
Due to the degree of automation, the grinding machines are
also classified as machining centres that can perform
various grinding operations with automatic tool selection. All
machines are operated with an NC-based control system.
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Fig. 2: Load profile of a turning machining centre over time
with different machining cycles shown (top) and section
with three identical pattern (bottom)

To categorise the energy dimension of the machines, their
rated power P is listed on the nameplate.

4.2 Description and discussion of the data

As described above, the data was recorded using
measuring devices with a sampling rate of 26’000 sps. The
aggregation rate of the underlying time series is 1s -
consequently, each value of the time series is composed of
an average of 26’000 samples.

The machines have several machine cycles in the period
under consideration, that are either similar/identical or
different. These appear in the load profile as repeating
identical or different patterns (see Fig. 2 (bottom)). Identical
patterns of one machine are summarised under one
identifier IDp. Fig. 2 (top) shows qualitatively how pattern
differ, for example, in the level of their peak load (b). The
number of pattern that are summarised under the same
identifier is denoted by n. Consequently, the associated
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Fig. 3: Section of the load profile with one machining cycle
and qualitative labelling of the characteristic values
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Tab. 1: Value ranges and statistical values of the electrical load profile of metal-cutting machine tools during machining

IDwm IDp  Type Industry Py n te.min te,max te,avg Pe¢min Pc max Pcavg Pc med Pe std Ccv
1 11 M Machinery 173 24 1100 1546 1184 -44101 88304 9164 8287 6838 0,75
1 1.2 M Machinery 173 24 931 2193 1633 -13809 53064 9298 8485 3925 0,42
2 2.1 M Machinery 113 36 1698 6863 4372  -37467 65304 8259 7628 2600 0,31
3 3.1 M Machinery 160 44 577 1675 911  -15166 38846 6804 6623 2640 0,39
4 4.1 T Machinery 65 60 328 406 337  -21824 48493 9925 6526 12637 1,27
4 4.2 T Machinery 65 57 456 699 478 -8831 31533 5757 5257 1997 0,35
4 4.3 T Machinery 65 50 756 912 777  -20737 49957 11184 7266 10628 0,95
5 5.1 T Machinery 80 a7 101 207 145 -4545 9507 2406 2649 1494 0,62
5 5.2 T Machinery 80 357 90 217 95 -14634 21161 2138 2435 3050 1,43
6 6.1 T Machinery 80 478 62 162 113 -6790 22395 7448 7046 3218 0,43
6 6.2 T Machinery 80 67 170 239 214  -20599 42715 5890 5389 3560 0,60
6 6.3 T Machinery 80 198 69 100 82 -8081 27361 6706 6572 4429 0,66
7 7.1 G  Machinery 53 14 392 701 469 5588 31993 15039 13701 4666 0,31
8 8.1 M Machinery 104 18 883 1160 1088 -51733 94841 7730 6802 5661 0,73
8 8.2 M Machinery 104 9 6573 10663 8343 -34122 71143 6892 6597 2285 0,33
8 8.3 M Machinery 104 23 2390 4273 3426  -28213 63395 6897 6555 2621 0,38
9 9.1 G Research 45 4 151 159 158 361 9192 2087 2017 850 0,41
9 9.2 G Research 45 3 153 181 168 532 7239 2078 2115 763 0,37
10 101 T  Automotive 110 116 132 169 155 16696 70556 23253 21711 5573 0,24
10 10.2 T  Automotive 65 86 87 116 100 16809 65397 25072 23676 5118 0,20
11 111 G Automotive 65 135 305 394 335 16560 33654 22877 23036 1800 0,08
11 112 G Automotive 65 103 321 450 389 8648 29480 23131 23009 1727 0,07
12 121 G Automotive 140 633 118 272 160 -38539 113593 24712 23782 10426 0,42
12 122 G Automotive 140 471 73 233 142  -42076 108595 24803 23757 11246 0,45
12 123 G  Automotive 140 301 139 206 142 -19304 84067 24186 23153 8964 0,37
13 13.1 M  Aerospace 84 12 46714 48438 47790 -51727 107350 13522 13815 2790 0,21
13 132 M  Aerospace 84 4 72606 80342 77540 -52518 108453 13448 13635 4059 0,30
13 133 M  Aerospace 84 6 68982 73997 69902 -46664 96613 13186 13294 1901 0,14
14 141 T  Aerospace 82 2 15521 17263 16392 -44720 77242 13030 12443 3394 0,26
14 142 T  Aerospace 82 3 16641 34022 23081 -44692 77797 12899 11873 3307 0,26
15 151 G  Aerospace 58 2 58261 66320 62291 1736 19595 11461 11369 2919 0,25
16 16.1 M  Aerospace 58 2 32780 35614 34197 -29254 62222 6759 6675 2675 0,40
16 16.2 M  Aerospace 58 7 6097 20955 10360 -31988 66853 7426 6688 5286 0,71
17 17.1 G  Aerospace 200 2 3905 3941 3923 3181 22553 14376 13373 3698 0,26
17 17.2 G  Aerospace 200 2 1287 1418 1353 3184 22750 14051 14264 5371 0,38
17 173 G  Aerospace 200 3 3842 4337 4008 3195 24564 13916 13741 4238 0,30
17 174 G  Aerospace 200 3 1144 1196 1164 4073 22596 14090 12776 3762 0,27
18 18.1 T  Aerospace 65 24 2174 6910 3721 -18697 41146 5925 5232 2559 0,43
18 18.2 T  Aerospace 65 22 2148 9590 3794 -18347 39845 6307 5908 2577 0,41
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statistical figures were determined from n samples. The
statistical figures thus represent values for identical pattern.
Different cycles are listed separately.

The length of a pattern, which represents the duration of the
machining cycle, is indicated by t (see Fig. 3), where tcavg
indicates the average, tcmax the maximum and temin the
minimum duration under the identical patterns. The
machining cycles of the machine tools analysed have a
duration of between 62 s and 72°606 s (20 h 10 min 6 s).

For the power, values are also given for identical samples
bundled together. Pcavg is the average of the averaged
power within identical patterns. Pcmax represents the
maximum load peak that can be observed within the
respective pattern. Pcmin represents the minimum value of
the time series for the power demand within the respective
segments. Pcmed is the average of the median values of the
bundle of similar pattern. Due to high positive and negative
peak loads as a result of power feedback, the observed
values for the power range between -52,5kW and
108,5 kW. The mean power values during processing
ranges from 2,1 kW to 25,1 kW.

The load profiles of some machines show comparatively
high standard deviations, which is characterised in a high
coefficient of variation (CV). This seems to apply in
particular to turning and milling machines, although there
are also several machining cycles among these machines
that have comparatively low and medium CV values.

Nomenclature

Shortcut Unit Description
cv - Coefficient of variation (u)
c,avg.

IDm - Machine identifier

IDp - Pattern identifier

n - Number of pattern considered

Pc,avg kw Average power within identical
pattern

Pc,max kw Maximum power within identical
pattern

Pcmed kw Averaged Median of power
values within identical pattern

Pc,min kw Minimum power value within
identical pattern

Pc,std kw Averaged standard deviation of
identical pattern

Pn kVA Rated power of the machine

tcavg S Average duration of identical
pattern

temax S Maximum duration of identical
pattern

te,min S Minimum duration of identical
pattern

Type - Machine type by main

manufacturing technology

M: Milling Machining Center
T: Turning Machining Center
G: Grinding Machining Center

One possible explanation is that turning and milling
processes involve more frequent dynamic positioning
operations with axis acceleration and deceleration, while
grinding processes are less dynamic. This could result in
different load behaviour with more or fewer single peak
loads. However, it is not possible to make a general
statement about the difference between turning, milling and
grinding processes based on the CV during machining
cycles.

Another factor could be the dimensioning of auxiliary units,
such as chillers and fluid pumps, which have a rather
constant or cyclical load behaviour with low dynamics.
Auxiliary units with low dynamic load behaviour but
comparatively high electrical power demand significantly
increase the average power consumption, so that load
peaks caused by axis movements may appear less
significant in these cases.

5 SUMMARY AND OUTLOOK

The aim of this paper is to provide a basis for the
development of automated approaches for analysing the
load profiles of machine tools. Therefor an overview of
electrical load profiles of machine tools during machining
cycles is given. The value ranges for cycle times and power
related figures are presented. It also shows how the time
series of the electrical load profile is to be interpreted with
regard to the sampling and aggregation rate.

The evaluation shows that there are significant differences
between the load profiles of machine tools during
machining cycles. This applies to the average power
demand of the milling, turning and grinding machines
examined, as well as other aspects. The duration of the
machine cycles found ranges from a few minutes to several
hours of processing time.

Further useful work in describing the characteristics of load
profiles for cutting machine tools involve considering the
influence of auxiliary units, feed and spindle drives, and
their partial load profiles. In particular, it would be worth
investigating whether generalisable statements about
certain characteristics in the overall load profile can be
related to the presence or relative dimensioning of
individual components. Furthermore, expanding the scope
of consideration to include additional machines and
subdividing them according to their degree of automation
would be a promising follow-up task.
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