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Abstract 

Due to rising costs and the need for a more sustainable use of resources, there is an increasing focus on 
energy use in industrial production. As a result, energy-related data, for example from machine tools, is 
increasingly being collected. In addition to information for the energy evaluation of individual systems and 
processes, load profiles of machine tools offer further opportunities for process monitoring, such as 
tracking of production lots. As sensors for electrical power monitoring can be retrofitted without interfering 
with the process or the machine control unit, load profiles offer a cost-effective data source for data mining 
and machine learning applications. In order to support the generalisability of such applications, this paper 
describes the load profiles of machine tools and presents an overview on characteristics and the variety 
of load profiles of turning, grinding and milling machines in industrial use cases. Load profiles of 18 
machine tools from machinery, automotive and aerospace production were analysed with regard to 
statistical characteristics during machining cycles. In particular, typical value ranges and statistical figures 
of load profiles and the influence of the sampling rate on the time series are presented.  
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1 INTRODUCTION  

As it is estimated that machine tools account for 5-10% of 
the global electrical energy demand of the metal-working 
industry [Denkena 2020], the evaluation of the energy-
related data of machine tools is a relevant aspect of the 
transformation towards a more sustainable industry. 

In addition, energy-related data from machine tools is a 
useful source of data to obtain information about processes. 
Previous work has shown that electrical load profiles of 
machine tools or machine components can be used for 
various applications. If energy-related data, such as the 
current of the spindle of a turning machine, is available at 
high frequency, it can be used to identify faulty workpieces 
during machining [Fertig 2020]. On the other hand, the load 
profile of a machine makes it possible to predict indicators 
such as machine overall equipment effectiveness (OEE) by 
utilising this data source [Thiede 2023]. Furthermore, 
approaches for segmenting the load profile offer the 
possibility of determining individual machine operations 
based on the load profile [Seevers 2019] or assigning the 
machining cycles of different manufacturing orders 
[Wächter 2023]. One obstacle to fully utilising the 
information potential of load profiles is the effort and expert 
knowledge required to interpret the data [Teiwes 2018].  

This paper is intended to create a data basis for the 
development of automated approaches for the 

interpretation of load profile data. To this end, this paper 
describes various characteristics and value ranges that 
have been observed in the load profiles of machine tools. 
The evaluation and description include sections in which 
machining takes place on the machine. The examples 
presented are machines that can be categorised as milling, 
turning and grinding machines based on their main 
manufacturing technology. In terms of the degree of 
automation, all machines are classified according to 
[Hirsch 2022] as machining centres, which can perform 
other technologies in addition to the main production 
technology and have an automatic tool change and partially 
automatic workpiece change. The focus of the description 
in this paper is on load profiles with a time resolution of 
1 sps (samples per second), as this appears to be suitable 
and widespread in practice. In addition, the effect of a 
reduced sampling rate on the load profile of machine tools 
is discussed and illustrated using the example of a rotary 
grinding machine. 

2 BACKGROUND: LOAD PROFILES OF 
MACHINE TOOLS 

The electrical load profile, hereinafter referred to simply as 
the load profile, refers to the electrical power drawn at the 
mains connection point of the machine.  
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A machine tool usually consists of different components 
that are supplied with electrical energy - for example feed 
and spindle drives, cooling systems, hydraulic and lubricant 
pumps, control units, etc. [Hirsch 2022]. The power drawn 
at the mains connection of the machine is the cumulation of 
the individual power demand of these components 
[ISO 14955-1].  

Of the total electrical energy demand of a machine tool, the 
largest shares are accounted for by cooling, cutting fluid 
supply, the hydraulic unit and the drives [Denkena 2020]. 
However, the share of the total electrical energy demand 
does not allow any general conclusions to be drawn about 
the load characteristics of the respective components. The 
load characteristics of individual components can be 
described either as constant, e.g. for control units, cyclical, 
e.g. for cooling units, or variable, e.g. for the main spindle 
[Abele 2012]. Denkena et al. describe the load 
characteristics of spindles with a short peak peak at the 
start of an operation followed by an interval of constantly 
increased load [Denkena 2020]. As a result of rapid 
positioning operations and hereby acceleration of axis and 
spindles, short duration peak loads of high amplitudes 
occur. Deceleration of axis and spindles drives also leads 
to negative peak loads at the mains connection 
[Dietmair 2009]. The load behaviour of cooling units with 2-
point control is described with a constantly increased base 
load and cyclically higher load blocks. The characteristics 
of high-pressure cooling lubricant pumps are also described 
with a base load and blocks of higher load, whereby the 
blocks are variable in size [Denkena 2020]. Eisele et al. 
show that the load behaviour of an investigated centrifugal 
pump can also exhibit short, smaller peak loads in addition 
to a base load if a higher volume flow is required from the 
machine for a short time [Eisele 2011].  

In general terms, the load profile of machine tools is 
described in technical standards such as VDMA 34179 and 
ISO 14955-1. These differentiate between different energy 
modes – such as off, standby, ramp up, warm up, ready for 
operation, processing [ISO 14955-1, VDMA 34179]. These 
modes represent specific constellations of component 
activation: e.g. Standby may involve active control units and 
cooling circuits, while other systems remain off. As a result, 
different operating states are characterized by 
distinguishable electrical signatures in the load profile, as 
shown by findings in various studies [Dietrich 2020, 
Dehning 2019, Suwa 2016]. 

In this context, machining cycles can be interpreted as 
structured sequences of power pattern, that correspond to 
physical process stages. This is reflected in the work of 
Schraml, who identifies typical sequences consisting of 
spindle acceleration, cutting engagement and idle or 
transitional phases, each defined by characteristic load 
levels and temporal profiles [Schraml 2018]. Some 
preliminary work gives value ranges for the length in time 
or the observed mean power for the different sections. 
Suwa et al. report cutting times between 6 and 8 minutes 
for turning operations [Suwa 2016], while Dietrich et al. 
describe durations for machining cycles from 66 to 354 
seconds [Dietrich 2020]. Schraml also describes durations 
of the individual sections ranging from a few seconds for 
e.g. spindle speed-up to several minutes for main cutting or 
idle phases [Schraml 2018]. 

Previous studies that process load profile data mostly rely 
on time series with a sampling rate of 1 sps (samples per 
second) or aggregation rates of 1 s, which has proven 
sufficient to distinguish energy states at the machine level 
[Liebl 2018, Teiwes 2018, Dietrich 2020, Dehning 2019]. 
High-frequency data is associated with higher costs for 

collecting and processing the data. Therefore, a 
compromise must be made when selecting the appropriate 
resolution of load profile data in an industrial context 
[Labbus 2019]. Accordingly, coarser resolutions, such as 
average values over 15-minute intervals, are also common 
at factory level [Dehning 2019, Walser 2021]. These are 
often based on billing purposes associated with the energy 
supply [Thiede 2012].  

3 INFLUENCE OF SAMPLING RATE ON THE 
DETECTION OF PEAK LOADS  

The appearance of load profiles in machine tools relies on 
the sampling rate of the measurement system. In this 
context, the number and magnitude of recorded load peaks 
are significantly influenced by the sampling rate. Initial 
measurements were conducted with a sensor system 
operating at a sampling rate of 10 sps, aggregated to 1 s, 
on the direct current (DC) side of the intermediate circuit of 
a tool machine. It was observed that both the number and 
the height of the recorded load peaks varied when the same 
machining program was recorded multiple times. This 
indicates that with a low sampling rate, peak loads may be 
represented differently from the real occurrence in the 
recorded time series.  

In order to record the actual course of load peaks of 
machine tools, literature also suggests a minimum sampling 
rate of 40 sps since the peak loads have a duration of 
approximately 50 ms [Menz 2017]. To address this issue, in 
the scenario described above, additional sensors capable 
of sampling current and voltage at a rate of 500 sps were 
installed on the DC side of a machine tool. A comparison of 
load profiles recorded simultaneously with both, 10 sps 
aggregated with 1 s and 500 sps, showed that the higher 
sampling rate enabled the detection of more and higher 
load peaks (see Fig. 1).  

The impact of varying the sampling rate was further 
examined by gradually reducing the sampling rate, starting 
at 500 sps. For the vertical grinding machining center under 

Fig. 1: Load curve of a machine tool during operation with 
1 s (top) and 500 sps (bottom) aggregation/sampling rate 
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consideration a threshold was determined, at which load 
peaks start to diminish or disappear. The analysis revealed 
that peak load disappearance started to occur at 
approximately 170 sps, where the peak magnitudes first 
showed a reduction of less than 1%. More substantial 
losses, exceeding 10%, along with the complete 
disappearance of single peaks, were observed at sampling 
rates of 10 sps and below. 

In industrial energy monitoring applications, temporal 
resolutions with aggregation periods of between 1 second 
and 15 minutes are common, although longer or shorter 
periods are occasionally found. Longer aggregation 
intervals of 1 h or more are more likely to be found when 
analysing the load profiles of entire buildings, whereas a 
aggregation period of 15 minutes is based on billing 
purposes. A data resolution of at least 0,1 sps is also 
recommended in the literature for analysing individual 
devices with dynamic clocking or load changes 
[Thiede 2012]. 

When analysing load profiles, taking into account the 
sampling rate, a distinction must be made between the 
sampling rate and the aggregation rate of the time series. 
The distinction concerns whether discrete sample values 
are present in the time series or whether several samples 
are aggregated to one value in the time series over an 
aggregation interval [Proakis 2007]. In this paper for clear 
differentiation the following definition is applied. The 
sampling rate is the frequency at which a continuous 
variable such as electrical power is sampled in discrete 
steps [Oppenheim 2013]. This is specified in samples per 
second (sps). Aggregated values are specified in the 
aggregation interval, e.g. in seconds. In commercially 
available data recorders for energy monitoring, electrical 
values are sampled at 26 ksps, for example [Emonio 2025]. 
The measured values are averaged over the set temporal 
measurement resolution, which corresponds to the 
aggregation rate, and saved as a time series value. In this 
example, with a temporal resolution of 0,1 s, each value of 
the load profile can be interpreted as the average of 2600 
sampled values. Such downsampling has the effect of a 
moving average processing on the time series, so that load 
peaks appear as smoothed elevations. When interpreting 
aggregated data, it should be noted that the temporal 
resolution of the time series should already be understood 
as pre-filtering. 

4 DESCRIPTION OF THE DATA SET 

In order to provide an exemplary overview of the 
characteristic values found in the load profiles of metal-
cutting machine tools, these are presented below. 

4.1 Description of the machines considered  

In the following description, nine machines are considered 
and each named with an identifier IDM. These are listed in 

Tab. 1. The machines considered operate in an industrial 
application in machinery and equipment engineering, 
automotive industry, aerospace supply industry or research 
facilities. The machines are categorised by type according 
to their main manufacturing technologies milling (M), 
turning (T) and grinding (G). The milling and turning 

machines in question are machining centres that can 
perform other machining technologies in addition to the 
main technology and that have an automatic tool changer. 
Due to the degree of automation, the grinding machines are 
also classified as machining centres that can perform 
various grinding operations with automatic tool selection. All 
machines are operated with an NC-based control system.  

To categorise the energy dimension of the machines, their 
rated power PN is listed on the nameplate. 

4.2 Description and discussion of the data  

As described above, the data was recorded using 
measuring devices with a sampling rate of 26’000 sps. The 
aggregation rate of the underlying time series is 1 s - 
consequently, each value of the time series is composed of 
an average of 26’000 samples.  

The machines have several machine cycles in the period 
under consideration, that are either similar/identical or 
different. These appear in the load profile as repeating 
identical or different patterns (see Fig. 2 (bottom)). Identical 
patterns of one machine are summarised under one 
identifier IDP. Fig. 2 (top) shows qualitatively how pattern 

differ, for example, in the level of their peak load (b). The 
number of pattern that are summarised under the same 
identifier is denoted by n. Consequently, the associated  

Fig. 3: Section of the load profile with one machining cycle 
and qualitative labelling of the characteristic values 

Fig. 2: Load profile of a turning machining centre over time 
with different machining cycles shown (top) and section 
with three identical pattern (bottom) 
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Tab. 1: Value ranges and statistical values of the electrical load profile of metal-cutting machine tools during machining 

  

IDM IDP Type Industry PN n tc,min tc,max tc,avg Pc,min Pc,max Pc,avg Pc,med Pc,std CV 

1 1.1 M Machinery 173 24 1100 1546 1184 -44101 88304 9164 8287 6838 0,75 

1 1.2 M Machinery 173 24 931 2193 1633 -13809 53064 9298 8485 3925 0,42 

2 2.1 M Machinery 113 36 1698 6863 4372 -37467 65304 8259 7628 2600 0,31 

3 3.1 M Machinery 160 44 577 1675 911 -15166 38846 6804 6623 2640 0,39 

4 4.1 T Machinery 65 60 328 406 337 -21824 48493 9925 6526 12637 1,27 

4 4.2 T Machinery 65 57 456 699 478 -8831 31533 5757 5257 1997 0,35 

4 4.3 T Machinery 65 50 756 912 777 -20737 49957 11184 7266 10628 0,95 

5 5.1 T Machinery 80 47 101 207 145 -4545 9507 2406 2649 1494 0,62 

5 5.2 T Machinery 80 357 90 217 95 -14634 21161 2138 2435 3050 1,43 

6 6.1 T Machinery 80 478 62 162 113 -6790 22395 7448 7046 3218 0,43 

6 6.2 T Machinery 80 67 170 239 214 -20599 42715 5890 5389 3560 0,60 

6 6.3 T Machinery 80 198 69 100 82 -8081 27361 6706 6572 4429 0,66 

7 7.1 G Machinery 53 14 392 701 469 5588 31993 15039 13701 4666 0,31 

8 8.1 M Machinery 104 18 883 1160 1088 -51733 94841 7730 6802 5661 0,73 

8 8.2 M Machinery 104 9 6573 10663 8343 -34122 71143 6892 6597 2285 0,33 

8 8.3 M Machinery 104 23 2390 4273 3426 -28213 63395 6897 6555 2621 0,38 

9 9.1 G Research 45 4 151 159 158 361 9192 2087 2017 850 0,41 

9 9.2 G Research 45 3 153 181 168 532 7239 2078 2115 763 0,37 

10 10.1 T Automotive 110 116 132 169 155 16696 70556 23253 21711 5573 0,24 

10 10.2 T Automotive 65 86 87 116 100 16809 65397 25072 23676 5118 0,20 

11 11.1 G Automotive 65 135 305 394 335 16560 33654 22877 23036 1800 0,08 

11 11.2 G Automotive 65 103 321 450 389 8648 29480 23131 23009 1727 0,07 

12 12.1 G Automotive 140 633 118 272 160 -38539 113593 24712 23782 10426 0,42 

12 12.2 G Automotive 140 471 73 233 142 -42076 108595 24803 23757 11246 0,45 

12 12.3 G Automotive 140 301 139 206 142 -19304 84067 24186 23153 8964 0,37 

13 13.1 M Aerospace 84 12 46714 48438 47790 -51727 107350 13522 13815 2790 0,21 

13 13.2 M Aerospace 84 4 72606 80342 77540 -52518 108453 13448 13635 4059 0,30 

13 13.3 M Aerospace 84 6 68982 73997 69902 -46664 96613 13186 13294 1901 0,14 

14 14.1 T Aerospace 82 2 15521 17263 16392 -44720 77242 13030 12443 3394 0,26 

14 14.2 T Aerospace 82 3 16641 34022 23081 -44692 77797 12899 11873 3307 0,26 

15 15.1 G Aerospace 58 2 58261 66320 62291 1736 19595 11461 11369 2919 0,25 

16 16.1 M Aerospace 58 2 32780 35614 34197 -29254 62222 6759 6675 2675 0,40 

16 16.2 M Aerospace 58 7 6097 20955 10360 -31988 66853 7426 6688 5286 0,71 

17 17.1 G Aerospace 200 2 3905 3941 3923 3181 22553 14376 13373 3698 0,26 

17 17.2 G Aerospace 200 2 1287 1418 1353 3184 22750 14051 14264 5371 0,38 

17 17.3 G Aerospace 200 3 3842 4337 4008 3195 24564 13916 13741 4238 0,30 

17 17.4 G Aerospace 200 3 1144 1196 1164 4073 22596 14090 12776 3762 0,27 

18 18.1 T Aerospace 65 24 2174 6910 3721 -18697 41146 5925 5232 2559 0,43 

18 18.2 T Aerospace 65 22 2148 9590 3794 -18347 39845 6307 5908 2577 0,41 
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statistical figures were determined from n samples. The 
statistical figures thus represent values for identical pattern. 
Different cycles are listed separately. 

The length of a pattern, which represents the duration of the 
machining cycle, is indicated by t (see Fig. 3), where tc,avg 
indicates the average, tc,max the maximum and tc,min the 

minimum duration under the identical patterns. The 
machining cycles of the machine tools analysed have a 
duration of between 62 s and 72’606 s (20 h 10 min 6 s). 

For the power, values are also given for identical samples 
bundled together. Pc,avg is the average of the averaged 
power within identical patterns. Pc,max represents the 

maximum load peak that can be observed within the 
respective pattern. Pc,min represents the minimum value of 

the time series for the power demand within the respective 
segments. Pc,med is the average of the median values of the 

bundle of similar pattern. Due to high positive and negative 
peak loads as a result of power feedback, the observed 
values for the power range between -52,5 kW and 
108,5 kW. The mean power values during processing 
ranges from 2,1 kW to 25,1 kW. 

The load profiles of some machines show comparatively 
high standard deviations, which is characterised in a high 
coefficient of variation (CV). This seems to apply in 

particular to turning and milling machines, although there 
are also several machining cycles among these machines 
that have comparatively low and medium CV values.  

 

Nomenclature 

Shortcut Unit Description 

CV -  Coefficient of variation (
Pc,std

Pc,avg
) 

IDM -  Machine identifier 

IDP -  Pattern identifier 

n -  Number of pattern considered 

Pc,avg kW  Average power within identical  

                    pattern 

Pc,max kW  Maximum power within identical    

                    pattern 

Pc,med kW  Averaged Median of power  

                    values within identical pattern 

Pc,min kW  Minimum power value within  

                    identical pattern 

Pc,std kW  Averaged standard deviation of  

                    identical pattern 

PN kVA Rated power of the machine 

tc,avg s  Average duration of identical    

                    pattern 

tcmax s  Maximum duration of identical  

                    pattern 

tc,min s  Minimum duration of identical  

                    pattern 

Type -  Machine type by main  

                    manufacturing technology 

 M: Milling Machining Center 

 T: Turning Machining Center 

 G: Grinding Machining Center 

One possible explanation is that turning and milling 
processes involve more frequent dynamic positioning 
operations with axis acceleration and deceleration, while 
grinding processes are less dynamic. This could result in 
different load behaviour with more or fewer single peak 
loads. However, it is not possible to make a general 
statement about the difference between turning, milling and 
grinding processes based on the CV during machining 

cycles. 

Another factor could be the dimensioning of auxiliary units, 
such as chillers and fluid pumps, which have a rather 
constant or cyclical load behaviour with low dynamics. 
Auxiliary units with low dynamic load behaviour but 
comparatively high electrical power demand significantly 
increase the average power consumption, so that load 
peaks caused by axis movements may appear less 
significant in these cases. 

5 SUMMARY AND OUTLOOK 

The aim of this paper is to provide a basis for the 
development of automated approaches for analysing the 
load profiles of machine tools. Therefor an overview of 
electrical load profiles of machine tools during machining 
cycles is given. The value ranges for cycle times and power 
related figures are presented. It also shows how the time 
series of the electrical load profile is to be interpreted with 
regard to the sampling and aggregation rate. 

The evaluation shows that there are significant differences 
between the load profiles of machine tools during 
machining cycles. This applies to the average power 
demand of the milling, turning and grinding machines 
examined, as well as other aspects. The duration of the 
machine cycles found ranges from a few minutes to several 
hours of processing time. 

Further useful work in describing the characteristics of load 
profiles for cutting machine tools involve considering the 
influence of auxiliary units, feed and spindle drives, and 
their partial load profiles. In particular, it would be worth 
investigating whether generalisable statements about 
certain characteristics in the overall load profile can be 
related to the presence or relative dimensioning of 
individual components. Furthermore, expanding the scope 
of consideration to include additional machines and 
subdividing them according to their degree of automation 
would be a promising follow-up task. 
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