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The paper is aimed on a vehicle dynamic simulation from scratch, 
using equations of motion solved by Runge-Kutta algorithm. The 
vehicle and a terrain interact in a game environment Unreal 
Engine, using line-trace functionality. All the scene objects are 
created in Creo Parametric, 3ds Max and Unreal Editor systems. 
The vehicle can be controlled by a keyboard and a racing steering 
wheel with pedals. The system allows free driving on the terrain 
in game-like style, recording and playback functions. All the 
computed parameters like vehicle’s locations, rotations, forces, 
velocities and accelerations can be recorded and saved into file 
during free drive. Then the data can be visualized in playback 
mode, with displayed forces, in 2D space and 3D by means of 
virtual reality headset HTC Vive. Virtual reality allows the user a 
full spatial view on the vehicle’s behavior. 
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1 INTRODUCTION 

The Unreal Engine (UE4) (Epic Games 2016) is an environment 
historically focused on game development. One of the most 
known game, created using this environment, is Unreal 
Tournament – one of the first 3D first person shooting games. In 
present the environment is freely available under a very friendly 
license, and it contains a development environment connected 
with Microsoft Visual Studio C++. We used Visual Studio to write 
the motion equations and all the necessary code to display and 
control the world (Fig. 1), and vehicle’s objects using a steering 
wheel and a keyboard, and output the results.  

The Unreal Engine is a game engine, which from point of view of 
the paper means that it is focused on real-time side of the 
simulation. In other words, if a load of the system is higher than 
actual system possibilities, the system will automatically 
decrease resolution or FPS (frames per second) rate to achieve 
real-time simulation. This can be a source of problems if a 
selected numerical integration method is used in order to get 
high precision data of vehicle’s dynamical parameters. 

 
Figure 1. Virtual test facility: 1 – test road with obstacles, 2 – rough 
terrain, 3 – jump ramps, 4 – glass barrier and billboard 

2 MATERIALS AND METHODS  

A simulation environment we created consists of the terrain 
created by the means of Unreal Editor and imported objects 
from Creo Parametric 2.0. The vehicle consists of a chassis, 
wheels, back lights and glass cabin with seats. All the vehicle 
parts were created in Creo Parametric, exported as STEP and 
converted into FBX file format. 

The Unreal Engine was used in order to visualize motion of the 
vehicle, and to create and use the terrain by a relatively simply 
way. Motion of the vehicle is described with equations of 
motion, based on theory by Zuvich (2008), Monster (2003), Vlk 
(2001), Tautkus (2011), Švígler (2013), Short (2004), and solved 
by Runge-Kutta 4th order (RK4) method in Tick (deltaTime) 
method. The deltaTime parameter is determined by the UE4 
system, and is a function of system’s performance and load. The 
parameter is used in RK4 method.  

To get distances of the vehicle over the terrain, in locations of 
wheels (Fig. 2, AB), we used a line tracing method available in 
UE4 API and forum by Rama (2016). 

 
Figure 2. Contact with terrain after a jump, and line-tracing. 1, 2 – jump 
ramps, 3 – flat terrain, A – upper end of wheel spring-dumper unit, B – 
terrain, C – bottom of wheel, D – line tracing in horizontal direction. AB 
distance is used in RK4, CD – can be used in future to improve model’s 
abilities. 

These distances were used in the equations of motion of the 
vehicle. The main idea was to create the model as simple as 
possible, to decrease computer performance needs as much as 
possible, but on the other hand, we required an ability to visually 
evaluate a motion of the vehicle model. This is why we created 
a model that: 

‐ allows motion of wheels in vertical direction only, considering 
the vehicle’s frame, 

‐ uses no tire and only one spring-dumper unit to simulate 
cushioning, 

‐ supposes continuous contact of a wheel with the terrain 
(Fig.2), except the case when a spring’s length should be 
higher than the free length of the spring, 

‐ takes into the account only these forces (Fig. 3, 4): Fh – drive 
forces, Fb – brake forces, Da – aerodynamic drag force, G – 
gravity force, D’ Alembert forces, Fp – spring forces, Fy – side 
forces on the wheels, 

‐ has all the forces dependent on forces in the springs, which 
are, in this case, the same as normal forces, 

‐ has the wheels which allow no rotation and the drive forces 
are applied directly on the wheels, without using an engine 
characteristic to simplify planned simulations and 
optimizations. 
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Figure 3. Visualized forces in Playback mode. 1 – test road, 2 – flat 
terrain, 3 – glass barrier around test facility, A – spring forces (Fp), B – 
drive forces (Fh), C – brake forces (Fb), D – rigid wheel. 
 
We used following equations of motion, based on model on Fig. 
4: 
 
∑ 𝐹𝑥 = 0: − 𝐺𝑥 − 𝐷𝑎 + (𝐹ℎ𝐿𝐹 − 𝐹𝑏𝐿𝐹). cos 𝛾𝐿𝐹 −
𝐹𝑦𝐿𝐹 . sin 𝛾𝐿𝐹 + (𝐹ℎ𝑅𝐹 − 𝐹𝑏𝑅𝐹). cos 𝛾𝑅𝐹 − 𝐹𝑦𝑅𝐹 . sin 𝛾𝑅𝐹 +
(𝐹ℎ𝐿𝑅 − 𝐹𝑏𝐿𝑅). cos 𝛾𝐿𝑅 − 𝐹𝑦𝐿𝑅. sin 𝛾𝐿𝑅 + (𝐹ℎ𝑅𝑅 −

𝐹𝑏𝑅𝑅). cos 𝛾𝑅𝑅 − 𝐹𝑦𝑅𝑅 . sin 𝛾𝑅𝑅 = 𝑚. 𝑎𝑥   (1) 

 
∑ 𝐹𝑦 = 0: − 𝐺𝑦   + (𝐹ℎ𝐿𝐹 − 𝐹𝑏𝐿𝐹). sin 𝛾𝐿𝐹 +

𝐹𝑦𝐿𝐹 . cos 𝛾𝐿𝐹 + (𝐹ℎ𝑅𝐹 − 𝐹𝑏𝑅𝐹). sin 𝛾𝑅𝐹 +

𝐹𝑦𝑅𝐹 . cos 𝛾𝑅𝐹 + (𝐹ℎ𝐿𝑅 − 𝐹𝑏𝐿𝑅). sin 𝛾𝐿𝑅 + 𝐹𝑦𝐿𝑅. cos 𝛾𝐿𝑅 +

(𝐹ℎ𝑅𝑅 − 𝐹𝑏𝑅𝑅). sin 𝛾𝑅𝑅 + 𝐹𝑦𝑅𝑅 . cos 𝛾𝑅𝑅 = 𝑚. 𝑎𝑦   (2) 

 
∑ 𝐹𝑧 = 0: − 𝐺𝑧 + 𝐹𝑝𝐿𝐹 + 𝐹𝑝𝑅𝐹 + 𝐹𝑝𝐿𝑅 + 𝐹𝑝𝑅𝑅 = 𝑚. 𝑎𝑧  (3) 

 

∑ 𝑀𝑥 = 0: − 𝑏𝐿. (𝐹𝑝𝐿𝐹 + 𝐹𝑝𝐿𝑅) + 𝑏𝑝. (𝐹𝑝𝑅𝐹 + 𝐹𝑝𝑅𝑅) +

(𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝐹 + 𝑙𝑆𝐿𝐹). (𝐹ℎ𝐿𝐹 − 𝐹𝑏𝐿𝐹). sin 𝛾𝐿𝐹 + 𝐹𝑦𝐿𝐹 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝐹 +

𝑙𝑆𝐿𝐹). cos 𝛾𝐿𝐹 + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑅 + 𝑙𝑆𝐿𝑅). (𝐹ℎ𝐿𝑅 − 𝐹𝑏𝐿𝑅). sin 𝛾𝐿𝑅 +

𝐹𝑦𝐿𝑅 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑅 + 𝑙𝑆𝐿𝑅). cos 𝛾𝐿𝑅 + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝐹 +

𝑙𝑆𝑅𝐹). (𝐹ℎ𝑅𝐹 − 𝐹𝑏𝑅𝐹). sin 𝛾𝑅𝐹 + 𝐹𝑦𝑅𝐹 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝐹 +

𝑙𝑆𝑅𝐹). cos 𝛾𝑅𝐹 + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝑅 + 𝑙𝑆𝑅𝑅). (𝐹ℎ𝑅𝑅 − 𝐹𝑏𝑅𝑅). sin 𝛾𝑅𝑅 +

𝐹𝑦𝑅𝑅 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝑅 + 𝑙𝑆𝑅𝑅). cos 𝛾𝑅𝑅 = −𝐼𝑥𝑥 . 𝜀𝑥   (4) 

 

∑ 𝑀𝑦 = 0: 𝑏. (𝐹𝑝𝐿𝐹 + 𝐹𝑝𝑅𝐹) − 𝑐(𝐹𝑝𝐿𝑅 + 𝐹𝑝𝑅𝑅) + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝐹 +

𝑙𝑆𝐿𝐹). (𝐹ℎ𝐿𝐹 − 𝐹𝑏𝐿𝐹). cos 𝛾𝐿𝐹 − 𝐹𝑦𝐿𝐹 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝐹 +

𝑙𝑆𝐿𝐹). sin(𝛾𝐿𝐹) + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑅 + 𝑙𝑆𝐿𝑅). (𝐹ℎ𝐿𝑅 − 𝐹𝑏𝐿𝑅). cos 𝛾𝐿𝑅 −

𝐹𝑦𝐿𝑅 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑅 + 𝑙𝑆𝐿𝑅). sin(𝛾𝐿𝑅) + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝐹 +

𝑙𝑆𝑅𝐹). (𝐹ℎ𝑅𝐹 − 𝐹𝑏𝑅𝐹). cos 𝛾𝑅𝐹 − 𝐹𝑦𝑅𝐹 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝐹 +

𝑙𝑆𝑅𝐹). sin(𝛾𝑅𝐹) + (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝑅 + 𝑙𝑆𝑅𝑅). (𝐹ℎ𝑅𝑅 −

𝐹𝑏𝑅𝑅). cos 𝛾𝑅𝑅 − 𝐹𝑦𝑅𝑅 . (𝑧𝑜𝑓𝑓𝑠𝑒𝑡𝑅𝑅 + 𝑙𝑆𝑅𝑅). sin(𝛾𝑅𝑅) +

𝐷𝑎. ℎ𝑎 = 𝐼𝑦𝑦 . 𝜀𝑦)      (5) 

 
𝜀𝑧 = 𝑣𝑥,𝑙𝑜𝑐𝑎𝑙  ∗  𝑠𝑖𝑛(𝛾) / (𝑐 + 𝑏)   (6) 

 
Where: 
Fp – spring force, Fh – drive force, Fb – brake force, Fy – side 
force, γ – steering wheel angle, b – distance between T (COG) 
and front axle in X axis, c - distance between T (COG) and rear 
axle in X axis, bL - distance between T (COG) and left wheels in Y 
axis, bP - distance between T (COG) and right wheels in Y axis, 
zoffset - distance between T (COG) and upper spring-dumper 
mount point in Z axis, lS – instant spring length, Da -  
aerodynamic drag force, εz – angular acceleration around Z axis. 
All the relevant parameters have LF, RF, LR, RR suffix (Left Front, 
Right Front, Left Rear, Right Rear wheel). 

 

The spring forces have been determined by equations: 

𝐹𝑝𝐿𝐹 = 𝑣𝑧𝐿𝐹 . 𝑘𝐿𝐹 + 𝑙𝑇𝐿𝐹. 𝑐𝐿𝐹    (7) 

𝐹𝑝𝑅𝐹 = 𝑣𝑧𝑅𝐹 . 𝑘𝑅𝐹 + 𝑙𝑇𝑅𝐹. 𝑐𝑅𝐹     (8) 

𝐹𝑝𝐿𝑅 = 𝑣𝑧𝐿𝑅. 𝑘𝐿𝑅 + 𝑙𝑇𝐿𝑅. 𝑐𝐿𝑅    (9) 

𝐹𝑝𝑅𝑅 = 𝑣𝑧𝑅𝑅 . 𝑘𝑅𝑅 + 𝑙𝑇𝑅𝑅. 𝑐𝑅𝑅    (10) 

 
Where: 
vz – velocities in Z axis, k – damping coefficients, lT – spring 
deformations, c – spring stiffness’s 

 
Figure 4. Mathematical model of the vehicle. 1 – center of a wheel, 2 – 
mounting point of a spring-damper unit, 3 – a point in COG plane XY, T – 
center of  gravity (COG), Fp – spring force, Fb – brake force, Fh – drive 
force, Fy – side force, γ – steering wheel angle, G – gravity force 

Velocities vz at wheel locations were determined by equations: 

𝑣𝑧𝐿𝐹 = 𝑏. 𝜔𝑦 + 𝑏𝐿 . 𝜔𝑥 + 𝑣𝑧𝑇     (11) 

𝑣𝑧𝑅𝐹 = 𝑏. 𝜔𝑦 − 𝑏𝑃 . 𝜔𝑥 + 𝑣𝑧𝑇     (12) 

𝑣𝑧𝐿𝑅 = −𝑐. 𝜔𝑦 − 𝑏𝐿. 𝜔𝑥 + 𝑣𝑧𝑇    (13) 

𝑣𝑧𝑅𝑅 = −𝑐. 𝜔𝑦 + 𝑏𝑃. 𝜔𝑥 + 𝑣𝑧𝑇    (14) 

 
Where: 
ωx – angular speed around x-axis (Fig.4), ωy – angular speed 
around y-axis 
 
The aerodynamic drag force Da has been determined by 
equation: 

𝐷𝑎 = 𝑐𝑥
1

2
𝜌. 𝑆𝑥. 𝑣𝑥

2      (15) 

 
Where:  
Cx – aerodynamic drag coefficient, ρ – air density, Sx – area of 
vehicle projection into a plane perpendicular on X axis, vx – 
vehicle’s velocity in X axis. 
 
To run the simulations was used a powerful game computer with 
parameters listed in Tab. 1. 
 
Table 1. Parameters of the computer we used 

CPU i7 – 4790 Haswell 

RAM 16 GB DDR3 

HDD 1 256 GB SSD 

HDD 2 1000 GB 

Video Card NVidia GeForce GTX 970 4GB 

Mainboard ASUSTeK Maximus VII Hero 

Steering Wheel Thrustmaster Ferrari 458 Italy 

3 RESULTS  

The result of above described equations, implemented in UE4 
C++ code is a game-like vehicle dynamics computer application 
that is not too much complicated and ready to be used in 
customized solutions. The vehicle’s motion is controlled by the 
equations only, which can be verified by several ways. The 
application allows the user: 

‐ Test the vehicle in free drive mode, by game-like way, 
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‐ Record the drive, including vehicle’s locations, rotations, 
forces, velocities, accelerations, and automatically output the 
result into file in CVS format, which can be easy imported into 
MS Excel, 

‐ Evaluate the drive in Playback Mode, where recorded forces 
are displayed by arrows (see the previous figures), 

‐ In Playback Mode the camera has geographic orientation 
(default view is North), and direction of view can be changed 
in real-time by steering wheel paddle shifters, 

‐ Use an automatic speed control, based on simple regulator, 
‐ Visual verification of the vehicle dynamic in virtual reality. 

 

 
Figure 5. Rough terrain created in Creo Parametric. 1 – Flat terrain and 
barrier around the virtual test facility, 2 – the terrain. 

 

The vehicle model is based on many parameters, which are 
independent on vehicle visualization, except the wheels 
locations, so they can be changed at any time, including real-
time, during simulation. The terrain can be created and modified 
in Unreal Editor, 3ds Max or any CAD application (Fig. 5). It can 
be also bought at Unreal Market (Epic Games 2016). 

4 DISCUSSION  

In the Introduction we wrote about deltaTime parameter as 
input into the RK4 equations. A default value is 120 FPS (frames 
per second) which produces 1/120s deltaTime. This value seems 
to be acceptable, but if the value is decreased to 90 FPS, the 
vehicle seems to be a little unstable, which means that it 
sometimes produces a vibrations. However that is not a problem 
caused by low FPS only, but it can be also a result of the 
mathematical model, which is quite simple and containing low 
amount of damping elements. The result is that values of forces 
can change significantly in very short time. We did not solve this 
problem in detail, since the results seem to be acceptable for 
planned simulations and optimizations based on recorded data. 
Another authors and their results are, in general, scientifically 
(Chrono 2016, Švígler 2013) or game focused (Epic Games 2016, 
Monster 2003, Zuvich 2008). Equations of motion of game 
focused authors use higher separation of the vehicle’s 
longitudinal and lateral motions, simplifications, and results may 
not be accurate. The scientifically focused authors use more 
detailed models with high precision outputs, however the 
models have too much time consumption, unsuitable for real-
time mode of the simulation. The presented model is placed 
between these limits. 

It uses line trace functions by Rama (2016) that sense the terrain 
in vertical direction. It is used to compute the spring forces. 
However this functionality can be used also to sense the terrain 
in horizontal direction (Fig.2, CD). It could enable the vehicle to 
react on e.g. side slip and subsequent possible additional roll 
moment. This functionality we plan to implement in future. 

The application is wrote in Visual Studio C++, which is powerful 
but it can be, sometimes, a little uncomfortable computer 
language. While other game engines (e.g. Unity3D) can use C# 

language, UE4 does not. A good new message is that Haxe 
language can also be used through Unreal.hx plugin. It is a free 
plugin for UE4 that enables developers to write code in Haxe, a 
high-level, type-safe language. The plugin compiles directly to 
C++ for high runtime performance, offering full access to the 
entire UE4 API and more. Haxe is an open source toolkit based 
on a modern, high level, strictly typed programming language, a 
cross-compiler, a complete cross-platform standard library and 
ways to access each platform's native capabilities. 

5 CONCLUSIONS  

The vehicle dynamical simulator was created in Unreal Engine 
game development environment. It is based strictly on 
equations of motion, and solved by Runge-Kutta 4th order 
algorithm in Tick() method of Unreal Engine. The vehicle is 
controlled by a keyboard and a racing steering wheel. The 
simulator has several modes, which allow it mainly to perform a 
free ride in game-like style, record such a ride, and output the 
ride into a file. All the virtual world’s parts can be created or 
modified in usual applications for 3D modelling, like Creo 
Parametric, 3ds Max, and also Unreal Editor. 

The result is that there is a vehicle dynamics tool, which can be 
used in research and education of dynamics, and presentation of 
virtual reality. Thanks to UE4, the visual appearance of the 
application is very real and trustworthy. 
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