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The paper deals with the kinematic analysis of a manipulator 
mechanism. The matrix method of kinematic analysis is used for 
the solution. The robot's mechanism is an open kinematic chain. 
The vector of position, velocity and acceleration is determined. 
The problem is solved using Matlab and MSC Adams / View. The 
Matlab program is used to solve kinematics equations in 
symbolic form. Computer software reduces the design time and 
also brings economic benefits. Conditions are being created for 
faster research and the creation of new mechanical systems 
gradually appearing in the production area. Computer 
simulation can also serve an educational purpose and giving 
additional information about the mechanical systems through 
simulation and kinematic analysis. 
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1 INTRODUCTION 

The objective of the kinematic analysis of bound mechanical 
systems is to determine the relationship between the 
coordinates of the driven kinematic pairs and the coordinates of 
the drives. to determine the appropriate velocities and 
accelerations and to investigate the motion of its significant 
points and members of the analyzed system.  
 
Mechanisms of industrial robots and manipulators are 
composed of bodies which form different kinds of kinematic 
chains. In most cases these mechanisms represent open or 
mixed kinematic chains. Two bodies of a kinematic chain 
mutually interconnected so that their mobility to each other is 
limited, form a kinematic pair. According to kind of kinematic 
bond in a kinematic pair the kinematic chains are composed of 
translational or rotational kinematic pairs. This subject is 
addressed by authors in papers [Delyova 2014, Frankovsky 2013, 
Gmiterko 2010, Hroncova 2012, 2014, Xiong 2018, Serrano 
2015].  
 
We use analytical, graphical, and experimental methods in 
kinematic analysis of mechanisms. Many analytical methods are 
based on different areas of mathematics. They provide the best 
accuracy in determination of the investigated parameters at 
each instant of the operation of the mechanism. The intensive 
progress of computers extends the application of analytical 
methods [Bozek 2014, Kelemenova 2016] and the use of 
computers in presenting the results of the calculation visually on 

a screen or paper largely eliminates the shortcomings of 
analytical methods resulting from the lack of clarity of obtained 
results.  

2 ANALYTICAL METHODS 

Analytical methods are based on the use of methods of analytical 
geometry, tensor and matrix calculus, complex variables and 
other areas of mathematics. These methods are connected with 
coordinate systems and lead to scalar equations for the 
investigated quantities [Brat 1981, Garcia 2015, Stejskal 1996].  
 
One of the methods used in the kinematic analysis of 
mechanisms is the vector method, which allows solving 
problems in an explicit form, which eliminates the need to solve 
algebraic equations of high degrees. The method describes the 
kinematic scheme of the mechanism by vector polygons. From 
these we can compile equations that solve the problem of 
position. Subsequently, we can get the equations to determine 
velocity and acceleration. The position of individual members is 
expressed with vectors. The beginning and end of the vector is 
in the kinematic bonds. The vector shapes that characterize the 
mechanism change with motion but remain closed. The 
condition of closure, formulated by vectors, allows by suitable 
projection into the coordinate axes obtain the necessary scalar 
geometric relations between the coordinates of individual 
members. Equations for velocity are obtained as their time 
derivations. The equation for acceleration is obtained by further 
derivation. If we want to investigate the motion of a point of a 
member of the mechanism, we express its position vector as the 
sum of the position vectors of the members that enclose this 
vector pattern.  
 
Graphical methods are based on the direct geometric 
construction of the paths of motion of the most characteristic 
points of the members of plane mechanisms and their kinematic 
quantities. The drawing shows the shape of these paths, the 
angles between the members and the configuration of the 
mechanism at a certain instant, the relationships between 
velocities and accelerations of different points (of course with 
errors, inherent in geometric construction). Graphical methods 
make possible to visualize the movement of members of planar 
mechanisms and their significant points. They are used to solve 
spatial mechanisms less frequently. 
 
Experimental methods are based on the measurement of various 
motion parameters during the operation of real mechanisms or 
their models. The combination of computer technology with 
measuring instruments expands the possibilities of application 
of experimental methods in kinematics. It makes possible the 
measurement of rapidly changing motion parameters and 
increases the accuracy of the measurements [Kurylo 2018, 
Papacz 2018].  
 
Matrix methods are often the most efficient for compilation of 
general algorithms for analysis of kinematic and force quantities 
of mechanisms of different configuration. Matrix notation is 
compact, illustrative, it is suitable for use in a computer 
environment. It allows an easy transition from symbolic 
equations to scalar equations and is suitable for numerical 
methods used on a computer. The theory of simple open 
kinematic chains has a direct application in the kinematic 
analysis of various manipulators and robots, which are often 
formed by these chains. We decompose the motion of two 
members bound by a lower kinematic pair into a finite number 
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of basic motions [Abramov 2014]. The kinematic diagram of one 
of these manipulators is shown in Fig. 1 [Brat 1981].  

3 MODEL OF A TWO-MEMBER RR MANIPULATOR 

The mechanical system of the two-member manipulator 
representing the open kinematic chain is composed of two 
members 1 and 2 and a base 0 according to Fig. 1.  
 

 

Figure 1. Two-member robotic arm on mobile chassis  

The two-member robotic arm is considered in the shape shown 
in Fig.2.  

 

Figure 2. Two-member robotic arm on fixed frame  

The member 1 of length l1 rotates around the axis z0 ≡ z1 by an 
angle φ1 and the member 2 of length l2 rotates around the axis 
z2 by an angle φ2 (Fig.3). It is necessary to investigate the 
absolute motion of the member 2 and its point M and to 
determine the position vector r0M, the position of the point M 
with respect to the base 0, to express the velocity v0M and the 
acceleration a0M of the point M with respect to the base 0 using 
the matrix method of basic motions. 

 

Figure 3. R-R mechanical system with 2° of freedom 

We introduce the coordinate systems in individual members 
according to Fig. 3. Movement of member 1 with respect to base 
0 is only rotational, coordinate system O1,x1,y1,z1 of member 1 is 
rotated with respect to coordinate system of the base O0,x0,y0,z0 
by angle φ1 around axis z0 ≡ z1, where φ1=φ1(t). The coordinate 
system O2,x2,y2,z2 of member 2 is shifted by the value l1 in the 

direction of the axis x1 and rotated by an angle φ2 around the 
axis z2. The length of member 2 is l2 and we investigate the 
absolute motion of point M, which is located at its end with 
respect to base 0. The generalized coordinate of the rotational 
motion of member 1 is q1= φ1 and the generalized coordinate of 
the rotational motion of member 2 is q2= φ2. We express the 
motion of member 2 by basic decomposition to the reference 
point M. In general, we express it in the form:  

n:1= n : (n -1)+ (n -1) : (n -2) +…+2:1,  

where n - denotes the number of members.  

4 MATRIX METHOD 

We look for the position, velocity and acceleration of the point 
M of member 2. Then the frame motion of this member is 
determined by the motion of point M and is expressed by the 
basic decomposition to the reference point M and described by 
the equation:  

𝑟0𝑀 = ∏ 𝑇𝑖,𝑖+1
1
𝑖=0 . 𝑟2𝑀    (1) 

Relative spherical motion is described by a transformation 
matrix:  

𝑇02 = ∏ 𝑇𝑖,𝑖+1
1
𝑖=0      (2) 

We denote the transformation matrices between individual 
coordinate systems in kinematic pairs using transformation 
matrices of basic motions. Matrix equation of the trajectory of 
the point M with respect to the coordinate system of the base 0:  

𝑟0𝑀 = 𝑇02. 𝑟2𝑀     (3) 

where matrix T02: 

𝑇02 = 𝑇01. 𝑇12     (4) 

The transformation between the coordinate system of member 
1 and the base 0 is described by matrix T01: 

𝑇01 = 𝑇𝑍6(𝜑1)     (5) 

The transformation between the coordinate system of member 
2 and member 1 is described by matrix T12: 

𝑇12 = 𝑇𝑍6(𝜑2)𝑇𝑍1(𝑙1)    (6) 

Extended vector of position of point M in body space 2:  

𝑟2𝑀 = [

𝑙2

0
0
1

]     (7) 

The shape of the matrices results from the type of bond:  

𝑇𝑍6(𝜙1) = [

𝑐𝜑1 −𝑠𝜑1 0 0
𝑠𝜑1 𝑐𝜑1 0 0

0 0 1 0
0 0 0 1

]   (8) 

𝑇𝑍6(𝜙2) = [

𝑐𝜑2 −𝑠𝜑2 0 0
𝑠𝜑2 𝑐𝜑2 0 0

0 0 1 0
0 0 0 1

]   (9) 

𝑇𝑍1(𝑙1) = [

1 0 0 𝑙1

0 1 0 0
0 0 1 0
0 0 0 1

]    (10) 
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𝑇12 = 𝑇𝑍6(𝜑2)𝑇𝑍1(𝑙1) = [

𝑐𝜑2 −𝑠𝜑2 0 𝑙1. 𝑐𝜑2

𝑠𝜑2 𝑐𝜑2 0 𝑙1. 𝑠𝜑2

0 0 1 0
0 0 0 1

] (11) 

Position vector r0M of point M of member 2 in the coordinate 
system of the base 0 using basic matrices:  

𝑟0𝑀 = 𝑇𝑍6(𝜑1). 𝑇𝑍6(𝜑2). 𝑇𝑍1(𝑙1). 𝑟2𝑀   (12) 

The resulting transformation matrix T02 of motion 2:0 is after 
calculation in Matlab [Hroncova 2019] , [Karban 2006]:  

T02 =[ [cos(q1)*cos(q2)-sin(q1)*sin(q2), 

-cos(q1)*sin(q2)-cos(q2)*sin(q1),0, 

l1*cos(q1)*cos(q2)-l1*sin(q1)*sin(q2)] 

[cos(q1)*sin(q2)+cos(q2)*sin(q1), 

cos(q1)*cos(q2)-sin(q1)*sin(q2),0, 

l1*cos(q1)*sin(q2)+l1*cos(q2)*sin(q1)] 

[    0,    0,    1,    0] 

[    0,    0,    0,    1] ] 

Position vector r0M of point M with respect to the basic 
coordinate system:  

𝑟0𝑀 = [

𝑥0𝑀

𝑦0𝑀

𝑧0𝑀

1

]     (14) 

Where the position vector r0M components are: 

𝑥0𝑀 = (cos(𝜑1)cos(𝜑2)-sin(𝜑1) sin(𝜑2))𝑙2 +

cos(𝜑1) cos(𝜑2)𝑙1-sin(𝜑1) sin(𝜑2)𝑙1  

𝑦0𝑀 = (sin(𝜑1) cos(𝜑2)+cos(𝜑1)sin(𝜑2))𝑙2 +

sin(𝜑1) cos(𝜑2)𝑙1+cos(𝜑1) sin(𝜑2)𝑙1  

𝑧0𝑀 = 0 

The resulting position vector of point M r0M of motion 2:0 in 
symbolic form from Matlab:  

r0M=(cos(q1)*cos(q2)-sin(q1)*sin(q2))*l2 

+cos(q1)*cos(q2)*l1-sin(q1)*sin(q2)*l1; 

(sin(q1)*cos(q2)+cos(q1)*sin(q2))*l2+sin(q1)*cos

(q2)*l1+cos(q1)*sin(q2)*l1; 

0; 

1; 

The magnitude of the position vector r1M of point M:  

|𝑟0𝑀| = √𝑥0𝑀
2 + 𝑦0𝑀

2 + 𝑧0𝑀
2 ;    (15) 

The magnitude of position vector r0M in symbolic form according 
to Matlab:  

r_0M =((l2*(cos(q1)*sin(q2) + cos(q2)*sin(q1)) + 

l1*cos(q1)*sin(q2) + l1*cos(q2)*sin(q1))^2 + 

(l2*(cos(q1)*cos(q2) - sin(q1)*sin(q2)) + 

l1*cos(q1)*cos(q2) - 

l1*sin(q1)*sin(q2))^2)^(1/2) 

Time derivative of the position vector r0M gives the velocity 
vector v0M of the point M with respect to the coordinate system 
of the base O0,x0,y0,z0. Velocity vector v0M:  

𝑣0𝑀 = �̇�0𝑀 = [

𝑣𝑥0𝑀

𝑣𝑦0𝑀

𝑣𝑧0𝑀

0

]     (16) 

Velocity vector v1M and its components in symbolic form from 
Matlab:  

vx0M = -l1*(omega1*cos(omega1*t)*sin(omega2*t) + 

omega1*cos(omega2*t)*sin(omega1*t) + 

omega2*cos(omega1*t)*sin(omega2*t) + 

omega2*cos(omega2*t)*sin(omega1*t)) - 

l2*(omega1*cos(omega1*t)*sin(omega2*t) + 

omega1*cos(omega2*t)*sin(omega1*t) + 

omega2*cos(omega1*t)*sin(omega2*t) + 

omega2*cos(omega2*t)*sin(omega1*t)) 

vy0M = l1*(omega1*cos(omega1*t)*cos(omega2*t) + 

omega2*cos(omega1*t)*cos(omega2*t) - 

omega1*sin(omega1*t)*sin(omega2*t) - 

omega2*sin(omega1*t)*sin(omega2*t)) + 

l2*(omega1*cos(omega1*t)*cos(omega2*t) + 

omega2*cos(omega1*t)*cos(omega2*t) - 

omega1*sin(omega1*t)*sin(omega2*t) - 

omega2*sin(omega1*t)*sin(omega2*t)) 

vz0M = 0 

The magnitude of velocity v1M of the point M:  

|𝑣0𝑀| = √𝑣𝑥0𝑀
2 + 𝑣𝑦0𝑀

2 + 𝑣𝑧0𝑀
2     (17) 

The magnitude of velocity vector v0M in symbolic form according 
to Matlab:  

v_0M=((l1*(omega1*cos(omega1*t)*sin(omega2*t) + 

omega1*cos(omega2*t)*sin(omega1*t) + 

omega2*cos(omega1*t)*sin(omega2*t) + 

omega2*cos(omega2*t)*sin(omega1*t)) + 

l2*(omega1*cos(omega1*t)*sin(omega2*t) + 

omega1*cos(omega2*t)*sin(omega1*t) + 

omega2*cos(omega1*t)*sin(omega2*t) + 

omega2*cos(omega2*t)*sin(omega1*t)))^2 + 

(l1*(omega1*cos(omega1*t)*cos(omega2*t) + 

omega2*cos(omega1*t)*cos(omega2*t) - 

omega1*sin(omega1*t)*sin(omega2*t) - 

omega2*sin(omega1*t)*sin(omega2*t)) + 

l2*(omega1*cos(omega1*t)*cos(omega2*t) + 

omega2*cos(omega1*t)*cos(omega2*t) - 

omega1*sin(omega1*t)*sin(omega2*t) - 

omega2*sin(omega1*t)*sin(omega2*t)))^2)^(1/2) 

Time derivative of the velocity vector v0M gives the acceleration 
vector a0M of the point M with respect to the coordinate system 
of the base O0,x0,y0,z0. Acceleration vector a0M: 

𝑎0𝑀 = �̇�0𝑀 = �̈�0𝑀 = [

𝑎𝑥0𝑀

𝑎𝑦0𝑀

𝑎𝑧0𝑀

0

]     (18) 

Acceleration vector a1M of point M and its components in 
symbolic form from Matlab:  

ax0M= -l1*(omega1^2*cos(omega1*t)*cos(omega2*t)+ 

omega2^2*cos(omega1*t)*cos(omega2*t) - 

omega1^2*sin(omega1*t)*sin(omega2*t) - 

omega2^2*sin(omega1*t)*sin(omega2*t) + 

2*omega1*omega2*cos(omega1*t)*cos(omega2*t) - 

2*omega1*omega2*sin(omega1*t)*sin(omega2*t)) - 

l2*(omega1^2*cos(omega1*t)*cos(omega2*t) + 

omega2^2*cos(omega1*t)*cos(omega2*t) - 

omega1^2*sin(omega1*t)*sin(omega2*t) - 

omega2^2*sin(omega1*t)*sin(omega2*t) + 

2*omega1*omega2*cos(omega1*t)*cos(omega2*t) - 

2*omega1*omega2*sin(omega1*t)*sin(omega2*t)) 

ay0M= -l1*(omega1^2*cos(omega1*t)*sin(omega2*t)+ 

omega1^2*cos(omega2*t)*sin(omega1*t) + 

omega2^2*cos(omega1*t)*sin(omega2*t) + 

omega2^2*cos(omega2*t)*sin(omega1*t) + 

2*omega1*omega2*cos(omega1*t)*sin(omega2*t) + 

2*omega1*omega2*cos(omega2*t)*sin(omega1*t)) - 

l2*(omega1^2*cos(omega1*t)*sin(omega2*t) + 

omega1^2*cos(omega2*t)*sin(omega1*t) + 

omega2^2*cos(omega1*t)*sin(omega2*t) + 
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omega2^2*cos(omega2*t)*sin(omega1*t) + 

2*omega1*omega2*cos(omega1*t)*sin(omega2*t) + 

2*omega1*omega2*cos(omega2*t)*sin(omega1*t)) 

az0M = 0 

The magnitude of the acceleration a1M of the point M is obtained 
by:  

|𝑎0𝑀| = √𝑎𝑥0𝑀
2 + 𝑎𝑦0𝑀

2 + 𝑎𝑧0𝑀
2     (19) 

The magnitude of acceleration vector a0M in symbolic form 
according to Matlab:  

a_0M=((l1*(omega1^2*cos(omega1*t)*sin(omega2*t)+ 

omega1^2*cos(omega2*t)*sin(omega1*t) + 

omega2^2*cos(omega1*t)*sin(omega2*t) + 

omega2^2*cos(omega2*t)*sin(omega1*t) + 

2*omega1*omega2*cos(omega1*t)*sin(omega2*t) + 

2*omega1*omega2*cos(omega2*t)*sin(omega1*t)) + 

l2*(omega1^2*cos(omega1*t)*sin(omega2*t) + 

omega1^2*cos(omega2*t)*sin(omega1*t) + 

omega2^2*cos(omega1*t)*sin(omega2*t) + 

omega2^2*cos(omega2*t)*sin(omega1*t) + 

2*omega1*omega2*cos(omega1*t)*sin(omega2*t) + 

2*omega1*omega2*cos(omega2*t)*sin(omega1*t)))^2 

+ (l1*(omega1^2*cos(omega1*t)*cos(omega2*t) + 

omega2^2*cos(omega1*t)*cos(omega2*t) - 

omega1^2*sin(omega1*t)*sin(omega2*t) - 

omega2^2*sin(omega1*t)*sin(omega2*t) + 

2*omega1*omega2*cos(omega1*t)*cos(omega2*t) - 

2*omega1*omega2*sin(omega1*t)*sin(omega2*t)) + 

l2*(omega1^2*cos(omega1*t)*cos(omega2*t) + 

omega2^2*cos(omega1*t)*cos(omega2*t) - 

omega1^2*sin(omega1*t)*sin(omega2*t) - 

omega2^2*sin(omega1*t)*sin(omega2*t) + 

2*omega1*omega2*cos(omega1*t)*cos(omega2*t) - 

2*omega1*omega2*sin(omega1*t)*sin(omega2*t)))^2)

^(1/2) 

Graphical representation of the quantities obtained by the 
matrix method are in the next part of the paper. 

5 GRAPHIC REPRESENTATION 

The resulting values of kinematics parameters obtained from 
simulations are processed in Matlab. The graphs of kinematic 
parameters displacement, velocity and acceleration of the end 
effector are shown next. 

Individual quantities in graphic form are shown for the values 
ω01=0.35 (rad/s), ω12=0.35 (rad/s):  

 

Figure 4. Trajectory components of point M 

 

Figure 5. Components of the velocity of point M  

 

Figure 6. Components of the acceleration of point M  

6 THE INVERSE KINEMATICS 

Inverse kinematics refers to the reverse process. Given the 
desired location of the end point L of the robotic arm, we need 
to determine what the angles of rotation of the joints should be 
so that the end point L is placed at the desired position. There is 
usually more than one solution as shown in Fig. 7.  

 

Figure 7. Initial and final position of the point L 

This is a typical problem in robotics that must be solved to 
control the movement of the robotic arm to perform the tasks 
we require. In a two-dimensional space with two members L1 
and L2 bound by rotational bonds and with respect to the desired 
coordinate system of the endpoint L the problem is reduced to 
find two angles. The first angle θ1 between the first arm and the 
base (or whatever is attached to it). The second angle θ2 
between the first arm and the second arm. From the equations 
determining the coordinates of the position of the endpoint L0:  
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𝑥𝐿 = 𝐿1cosθ1 + 𝐿2cos(𝜃1 + 𝜃2)    (20) 

𝑦𝐿 = 𝐿1sinθ1 + 𝐿2sin(𝜃1 + 𝜃2)    (21) 

we calculate the angles in the initial position xL0 and yL0. This 
represents two equations with two unknowns θ1 and θ2. We 
proceed in the same way for the end position of the point Ltf xLtf 
and yLtf. 

7 THE FORWARD KINEMATICS 

The two-arm robot model shown in the Fig. 3 consists of two 

members of length L1 and L2 which are connected by one 

rotational kinematic pair to the frame and are connected to each 

other by a second rotational kinematic pair. The drives are 

mounted in rotational kinematic pairs. The angle of rotation in 

kinematic pairs is denoted by angles θ1 and θ2. When solving the 

forward kinematics problem we determine the position of the 

endpoint L described by equations (20) and (21):  
 

Knowing the values of both angles we determine the position of 
the endpoint. During the motion of the manipulator with arms 
with lengths L1 = 0.4 meters and L2 = 0.3 meters, with the values 
θ10=-19°, θ1fin=43°, θ20=44°, θ2fin=151° in Fig. 7 is the position of 
the trajectory during the movement shown in Fig. 8.  

 

Figure 8. Trajectory of the point M 

Illustration of the position of the endpoint at different 
combinations of the angles θ1 and θ2 are shown in Fig.9.  

 

Figure 9. Coordinates x-y for different combinations of θ1 and θ2  

The angles θ1 and θ2 with known trajectory (Fig. 8) of the end 
point L is shown in Fig. 10. 

 

Figure 10. Rotations θ1 and θ2, angular velocities ω1 and ω2 and angular 
accelerations α1 and α2  

During the motion of the manipulator with arms with lengths 
L1=0.4 meters and L2=0.3 meters with the values θ10=0°, 
θ1fin=180°, θ 20=-90°, θ 2fin=270° the position of point L is shown 
in Fig. 11.  

 

Figure 11. Trajectory of the point L 

Illustration of the position of the endpoint at different 
combinations of the angles θ1 and θ2 are shown in Fig.12.  

 

Figure 12. Coordinates x-y for different combinations of θ1 and θ2  

The angles θ1 and θ2 with known trajectory (Fig. 11) of the end 
point L is shown in Fig. 13.   

Using SimMechanics in the Matlab/Simulink with the inverse 
dynamic problem we obtain driving torques τ1 a τ2 (Fig.14) in 
respective joints of the manipulator (Fig.3). Maximum torque 
magnitudes are τ1 = 2,7784Nm and τ2 = 0,6901Nm.  
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Figure 13. Rotations θ1 and θ2, angular velocities ω1 and ω2 and angular 
accelerations α1 and α2  

 

Figure 14. Torques τ1 and τ2 in joints of member 1 and 2  

The block diagram in SimMechanics for calculation of these 
torques is in (Fig.15).  

 

Figure 15. SimMechanics block diagram for determining torques τ1 and 
τ2 in  joints of member 1 and 2 

Verification of the accuracy of the calculation is possible by 
substituting the obtained results into the forward problem. The 
respective block diagram in SimMechanics is shown in Fig. 16.  

 

Figure 16. SimMechanics block diagram for determining the angular 
motion produced by torques τ1 and τ2 in joints of member 1 and 2 

The IC (Initial Conditions) blocks define the values of the angles 
at the beginning of the motion. 

8 SOFTWARE SIMULATION 

MSC Adams uses an object-oriented programming environment 
with animated simulation. It simulates complex mechanical 
systems with more degrees of freedom. Models are defined 
directly by the geometry of individual bodies and their kinematic 
bonds, driving forces and motion generators. The analyzed robot 
model (Fig. 1) is next simulated in the MSC Adams / View 
software.  

Our goal is to describe the movement of the end effector. The 
previous parts of the paper were also devoted to solving the 
forward problem of kinematics [Hunady 2019].  

   

Figure 17. MSC Adams/View model and the trajectory of the basket 
during the simulation 

We write the dynamic equations of motion in the form: 

𝑀(𝛳)�̈� + 𝑉(𝛳, �̇�) + 𝐺(𝛳) = 𝜏   (22) 

where 

τ –   the vector of actuator torques, M(θ) – the inertia matrix, 

𝑉(𝜃, �̇�) – the Coriolis centripetal vector and G(θ) – the gravity 

vector. 

Equation (22) in our case represents a system of two 2nd order 
differential equations.  

A reliable computation of the respective mechanical quantities 
is essential in design of mechanisms. These quantities then allow 
for further scaling of the individual parts of the mechanism. 
Graphs of kinematic quantities shown in Fig. 18 to Fig. 21.  

a)  

b)  

c)  

Figure 18. Position of the gripper's center of gravity a)xM , b) yM , c) |rM| 
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a)   

b)  

c)  

Figure 19. Velocity of the gripper's center of gravity a)vxM , b) vyM , c) 
|vM| 

a)   

b)  

c)  

Figure 20. Acceleration of the gripper's center of gravity a)axM , b) ayM , 
c) |aM| 

a)   

b)  

c)  

Figure 21. The torques τ1, τ2 and τ3 in bonds 

The postprocessing is an integral part of computer modeling. It 
serves for creating, processing, modifying and presenting 
simulation results in the form of graphs. In the postprocessor we 
can display the model at any instant of the simulation, we can 
export the simulation process in a video format. The simulation 
results can be viewed also as numerical values in a tabular form 
or displayed in graphs.  

9 CONCLUSIONS 

We presented the procedure for analysis of the kinematic 
problem of the mechanism in Matlab using the matrix method 
and in MSC Adams/View software. MSC Adams/View is used for 
the simulation of motion of complex mechanical systems.  
 
A significant advantage of computer simulation is the possibility 
of immediate visualization of various variants of the model and 
analysis of the impact of any changes on the function of the 
model. Simulation verifies and reports possible collisions of 
model elements and displays the information about the chosen 
indicators on the screen. This gives a better understanding of the 
function of the model and verifies its functionality. Interactive 
simulation and visualization make this process even more 
comfortable and more effective. Immediate visualization gives 
feedback of the effect of potential changes of the model. The 
model is solved numerically. The results are obtained in the form 
of diagrams. This methodology provides a suitable tool for 
solving problems of teaching and practice.  
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