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This paper develops a model for DC motor diagnostics based on 
a state-space model approach. Its digital twin works in parallel 
with the real motor. The output signals of the motor and the 
digital twin from the electric current and angular velocity 
sensors are analyzed. The motor defects are detected by the 
magnitude of the discrepancy. If a defect is detected, the 
diagnostic system transmits information about it to the control 
system, turns on the defect indication, then by fuzzy logic 
methods or other methods determines the type of defect, the 
system element in which the defect occurred, predicts the 
remaining life, the control system is fail-safe operation. If the 
magnitude of the defect is insignificant, then appropriate 
maintenance actions are recommended. If the magnitude of 
the defect is significant, an emergency shutdown of the motor 
must be performed.  
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1 INTRODUCTION 

Currently, electric motors are widely used in industry, digital 
manufacturing, CNC technologies [Vopat 2014, Jakubowski 
2014], which achieve very precise products [Beno 2013, 
Peterka 2014], and transport due to their simple design and low 
cost. To improve the reliability, their diagnostics is required. 
The accuracy and reliability of electric motor diagnostics largely 
depend on the correct construction of diagnostic models. The 
mathematical apparatus based on vector-matrix models in the 
space of states in the time domain is chosen for diagnostics, 
since it has the following advantages: 
- convenience of notation; 
- compactness of records in vector-matrix form; 
- simplicity of analysis; 
- demonstrativeness, because behavior of drive is considered as 
behavior of point in Euclidean space. 
The methods of analysis and synthesis of state-space models in 
vector matrix form have a significant advantage over operator 
methods in that they are relatively easy to extend to a wide 
class of technical systems. 
Over the past two decades this method has been successfully 
implemented in many industries [Shaitor 2021, Mikova 2020]. A 
similar solution is also in the research work [Handrik 2017] with 
concrete results [Kopas 2017]. The diagnostics method using 
measured data from embedded sensors in real time is the most 
effective method and is becoming more and more common 
[Cacko 2014]. Measured data of drive operation parameters 
and state after identification can be used to develop an 
effective system of their control, diagnostics and prediction of 
residual life. 
There are various methods of electric motor diagnostics, 
described in [Kuric 2021, Lei 2020, Yin 2020]. There are 2 main 
approaches: on the basis of data [Xue 2018, Fu 2017, Luo 2020, 

Bozek 2021] and on the basis of models [Ding 2013]. A special 
case of the data-based approach is a method based on fuzzy 
logic [Nikitin 2022a, Peterka 2020, Nikitin 2020a]. Model-based 
diagnostic methods are well studied and there are a large 
number of publications on this topic, for example, [Zhong 2018, 
Li 2017a, Li 2017b]. A special case of the model-based approach 
is the observer-based method [Yang 2015, Zhou 2018, Zhong 
2017]. Another variant is the digital twin approach [Nikitin 
2020b]. Its digital twin works in parallel with the real motor 
[Nikitin 2020c]. The output signals of the motor and the digital 
twin from the angular velocity (displacement), electric current 
and voltage sensors are analyzed. Then the presence of motor 
defects is determined by the magnitude of the discrepancy 
[Stepanov 2021]. 
The problem of synthesizing nonlinear state observers has been 
the subject of constant research over the past three decades. 
Observer synthesis methods for linear Kalman, Luenberger, H∞-
perturbation suppression, and high-gain systems have been 
extended to some specific classes of nonlinear deterministic 
systems. The proposed methods use a general framework for 
the estimation error dynamics of nonlinear systems and are 
based on asymptotic stability for the estimation error or on H∞-
suppression of the effect of perturbations on the estimation 
error. It should be noted that, just as in the case of linear 
systems, such an observer provides an optimal estimate of the 
state vector when t → ∞. This distinguishes them from the 
original Kalman filter, which gives the optimal error for the 
stochastic system in terms of standard deviations at each time 
point, and which can be used at both infinite and finite time 
intervals. High-gain observer synthesis methods with no 
measurement distortion and small initial deviations of observer 
and system states can simultaneously suppress modeling 
uncertainty and quickly recover system states. To achieve the 
goals of reducing the influence of uncertainties and rapid state 
estimation, the gain of the observer is chosen large enough. 

2 METHODS  

The development of a mathematical model of a DC motor 
initially begins with differential equations that describe the 
electrical and mechanical parts of the motor. Then the motor 
model is written in discrete vector-matrix form in the state 
space. 
The analysis and synthesis of technical systems is usually 
carried out by one of two basic methods. The first method is 
based on the Laplace transform, Z-transforms, and transient 
functions. This method is a frequency method. The second 
method is based on the space of states. It has the following 
advantages over the frequency method: the description in the 
space of states is convenient for solving problems on the 
computer; it allows unifying the description of one-dimensional 
and multidimensional systems; it can be applied to nonlinear 
and nonstationary systems. 
A motor is always affected by perturbations caused by external 
factors such as load torque, measurement errors, parameter 
errors and additive defects, the motor model in discrete vector-
matrix form in state space is extended as follows [Trefilov 2021, 
Nikitin 2022b]: 

kfkkdkkk fEdEBuA  xx 1      (1) 

kfkkdkkk fFvdFDuCy  x       (2) 

where x is state vector, y is measurement vector, u is control 
vector, A is status matrix, B is control matrix, C is measurement 
matrix, D is forward link matrix, k is discrete time, E and F are 
noise matrices of appropriate dimensions; d is a deterministic 
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unknown input vector; ξ is a random variable depending on the 
system operation, considered to be normally distributed; v is a 
random noise measurement variable, considered to be 
normally distributed; f is an additive defect vector, independent 
of u and x, E and F are defect distribution matrices of 
appropriate dimensions.  

The matrices E and F can represent different defects in the 
engine. In the case of a defect vector f, which is a function of 
motor state and input variables, the above representation can 
also describe multiplicative defects and the stability of motor 
control can be compromised [Trefilov 2018].  
For example, for motors, such defects can be considered as 
inter-turn faults, which lead to a decrease in stator winding 
resistance and inductance. 
As originally proposed in [Turygin 2018], the defect detection 
filter is the first type of observer-based model generator (Fault 
Detection and Isolation, FDI). A full-order state observer can be 
implemented as: 

)ˆ(1 kkkkk yyLBuA  xx ,     (3) 

kkk DuCy  xˆ ,                        (4) 

kkk yyr ˆ ,                              (5) 

where L is observer matrix, ŷ is parameter estimate vector, r is 
residual vector. 

In the case of normal functioning of the motor the value of the 
residual is equal to zero, the transfer function of the technical 
system can be implemented as a defect detection filter. 
In the case of normal functioning of the motor the following 
equality is true 

0lim kr .                           (6) 

When a defect occurs, the inequality rk≠0, which can be used as 
an indicator of a defect in the engine. In practice, however, 
perturbations are unavoidable, so the inequality rk≠0 cannot be 
used unambiguously to make any decision. To cope with this 
problem, the non-convexity must be extended to the following 
formula, by introducing a so-called output filter V, which can be 
designed to increase the sensitivity to defects and reduce the 
sensitivity to residual. 

)ˆ( kkk yyVr                                (7) 

where V is output filter. 
The authors propose to use the motor armature current 
residual to diagnose a DC motor. When a defect such as an 
armature winding short circuit occurs, the resistance and 
inductance of the motor armature winding decreases 
compared to the reference model, which leads to an increase in 
the motor current discrepancy. A computational experiment 
was carried out to analyze the effect of inter-turn shorting in 
the DC motor armature winding. 

3 RESULTS 

The results of DС motor simulation at insignificant defects are 
obtained. Figure 1 shows a model of DC motor with digital twin 
with the following parameters: ke1=1.21, km1=0.95, J1=0.0031, 
R1=14.6, L1=0.248. U=220 V, I=2.17 A, T=1.91 N∙m (ton=0.1 sec), 
ω=155.6 rad∙sec-1. A voltage step is applied to the input. The 
load torque is applied after 0.1 sec. As a result of inter-turn 
short circuit, the armature winding resistance and inductance 
decreased by 10%: delta=0.9, J2=J1, R2=R1*delta, L2=L1*delta, 
ke2=ke1, km2=km1. The magnitude of the change in the 
electric current residual is shown in Figure 2. The magnitude of 
the change in the angular velocity residual is shown in Figure 3.  

The peak value of the electric current residual is 41.5% for 
armature winding resistance and inductance when reducing by 
10%. 
The peak value of angular velocity residual is 6.4% for armature 
winding resistance and inductance when reducing by 10%. 
As a result of inter-turn short circuit, the armature winding 
resistance and inductance decreased by 30%: delta=0.7, J2=J1, 
R2=R1*delta, L2=L1*delta, ke2=ke1, km2=km1. 
The magnitude of the change in the angular velocity residual is 
shown in Figure 4. The magnitude of the change in the angular 
velocity residual is shown in Figure 5. 

 

Figure 1. DC motor model with digital twin 

 

Figure 2. Change of electric current for armature winding resistance 
and inductance when reducing by 10% 

 

Figure 3. Change of angular velocity for armature winding resistance 
and inductance when reducing by 10% 

 

Figure 4. Change of electric current for armature winding resistance 
and inductance when reducing by 30% 

The peak value of electric current residual is 157% for armature 
winding resistance and inductance when reducing by 30%. 
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The peak value of angular velocity residual is 22% for armature 
winding resistance and inductance when reducing by 30%. 

 
Figure 5. Change of angular velocity for armature winding resistance 
and inductance when reducing by 30% 

Analyzing the results of DC motor simulation, we can conclude 
that when the defect - of inter-turn short circuit increased from 
10% to 30%, the peak value of the electric current residual 
increased from - 0.92 A to -3.44 A, the peak value of the 
angular velocity residual increased from -9.8 rad∙sec-1 to -34.4 
rad∙sec-1. 

Analysis of the results of the computational experiment shows 
that the electric current is more sensitive to motor defects. 
Therefore, the following experiments were carried out with 
measuring the electric current residual only.  
Figure 6 shows models of DC motor with various reducing 
armature winding resistance, inductance and digital twin for a 
rectangular voltage input signal. The magnitude of the change 
in the electric current residual is shown in Figure 7. 

 

Figure 6. DC motors models with various reducing armature winding 
resistance, inductance and digital twin for a rectangular voltage input 
signal 

 

Figure 7. Change of electric current residual for armature winding 
resistance and inductance when various reducing by 10%, 30%, 50%, 
70% 

Figure 7 shows that when the armature winding resistance and 
inductance decreases, the peak armature current discrepancy 

increases. If the peak residual is zero, this indicates that the 
motor parameters are nominal and there are no defects. 
Figure 8 shows models of DC motor with various reducing 
armature winding resistance, inductance and digital twin for a 

linear voltage input signal. The magnitude of the change in the 
electric current residual is shown in Figure 9. 

 

Figure 8. DC motors models with various reducing armature winding 

resistance, inductance and digital twin for a linear voltage input signal 

 

Figure 9. Change of electric current residual for armature winding 
resistance and inductance when various reducing by 10%, 30%, 50%, 

70% 

By comparing the value of the peak current residual, we can 
conclude that for a linear voltage input signal, the peak residual 
is 12.3 times less than for a rectangular voltage input signal. 
The smaller electric current residual for a linear voltage input 
signal is explained by the fact that the motor rotor together 
with the load have a certain moment of inertia. The sum of 
moments (electromagnetic torque with sign ‘+’, load torque 
with sign ‘–‘) is equal to the product of the moment of inertia 
by the angular acceleration. For a rectangular voltage input 
signal, the angular acceleration tends to infinity at the time of 
the jump, with a linear change in angular velocity, the angular 
acceleration will be a constant. To provide infinite angular 
acceleration requires infinite motor torque and therefore 
infinite electric current.  

4 DISCUSSION 

A full-dimensional state observer serves as the core of the 
defect detection filter, whose online computational cost is 
much higher than that of a reduced-dimensional observer. In 
contrast, a reduced dimensional observer can provide similar 
estimation performance, but with much lower online 
computational cost. This is one reason for creating observers of 
minimal complexity, such as Luenberger observers. 
The diagnostic observer scheme yields a reduced-order 
unconstraint with less computational complexity, which is 
desirable for online diagnostic implementations. 
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In scientific papers, depending on the type of system under 
consideration, two procedures for calculating the 
unrelatedness are considered. One is statistical testing, which is 
mainly applied to stochastic systems [Ding 2019]. The other is 
norm-based estimation, which is focused on systems containing 
deterministic perturbation or system uncertainty [Luo 2017]. 
Because of the lower computational online computation and 
the systematic calculation of the threshold, standard 
unconstraint is widely used.  
L2 and L∞ are two standard normals used in diagnostics for 
estimating the unrelatedness and threshold value. The L2 norm 
is one of the popular functions for estimating the unsteadiness. 
The L2 norm measures the energy of the jitter signal. For a 
given signal of unsteadiness, the L2 norm is defined as: 







0

2

k

k

T

k rrJ                           (8) 

Since it is not practical to estimate the unsteady signal on an 
infinite time interval, it is common to use an estimate on a time 
interval from k1 to k2. 
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In practice, the mean square value is often used instead of the 
L2 norm, which measures the average energy of the 
unconformity over the time interval [1; n]. The estimation 
function of the RMS value is defined as follows: 





n

i

k

T

knkRMS rr
n

J
1

],[2

1
                  (10) 

The L∞ norm (also known as peak norm, maximum norm) is 
defined as the maximum absolute values of its components. For 
diagnostic purposes, the following peak value estimation 
function is usually used: 

2)( kpeak

T

kpeakpeak rrJ                   (11) 

The choice of the threshold for defect detection significantly 
affects the efficiency of the diagnostic system. It is found that 
the threshold value is a tolerance limit for model interferences 
and uncertainties under no-failure conditions. Setting a lower 
threshold typically results in the diagnostic system being 
subjected to more false alarms, and a higher threshold setting 
typically causes a higher probability of missing a defect. 
Therefore, based on the chosen evaluation function, the 
threshold can be generally defined: 

eth JJ sup                           (12) 

where Je represents the sign of the unrelated signal, which can 
be L2, L2, [k1; k2], JRMS[k; n] and Jpeak. 
The simplest logic for making a defect decision is to compare 
the function of the estimated difference value Je with a given 
threshold Jth [Lekomtsev 2021]. Thus, the decision is made as 
follows: If Je≤Jth, there are no defects. 
If Je>Jth, then defects are detected and the diagnostic system 
determines the type of defect, the degree of its development 
and predicts the remaining service life. 
If a defect is detected, the diagnostics system transmits 
information about this to the control system, turns on the 
indication of the occurrence of defects, then by methods of 
fuzzy logic or other methods determines the type of defect, the 
system element in which the defect occurred, predicts the 
remaining life, the control system is fail-safe operation. 
If the magnitude of the defect is insignificant, then appropriate 
maintenance actions are recommended. If the magnitude of 
the defect is significant, an emergency shutdown is necessary. 

5 CONCLUSIONS 

Every company that wants to maintain its competitiveness in 
the market must permanently ensure a constant increase in 
efficiency and productivity. Only then can it be ensured that the 
prices of his products will not grow more than the market will 
accept. Continuous modernization of production processes is 
one way to achieve higher productivity [Karrach 2022]. Such a 
possibility is to increase the reliability of machines and 
equipment as stated by the authors [Kuric 2020, Zajacko 2018] 
especially electric motors thanks to their diagnostics. 
A model for DC motor diagnostics based on a state-space 
model approach is developed. Its digital twin works in parallel 
with the real motor. The output signals of the motor and the 
digital twin from the electric current and angular velocity 
sensors are analyzed. The motor defects are detected by the 
magnitude of the residual. If a defect is detected, the diagnostic 
system transmits information about it to the control system, 
turns on the defect indication, then by fuzzy logic methods or 
other methods determines the type of defect, the system 
element in which the defect occurred, predicts the remaining 
life, the control system is fail-safe operation. If the magnitude 
of the defect is insignificant, then appropriate maintenance 
actions are recommended. If the magnitude of the defect is 
significant, an emergency shutdown of the motor must be 
performed. 
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