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Abstract 

Mobile robots (MRs) are exerting a significant influence in industrial as well as residential settings. 
Concurrently with the escalating advancement of technology, the incorporation of artificial intelligence 
algorithms into the obstacle evasion issue of MRs is gaining increasing attention. The paper utilizes Deep 
Reinforcement Learning (DRL) to a MR that is furnished with a camera. Images captured by a stereo 
camera will be inputted into the YOLO-v8 model to identify obstacles situated in the path of the MR. 
Subsequently, the distances to these obstacles will be regarded as the state of the MR. The information 
was utilized to train a Deep Q-Network. Throughout this training process, the system acquires the 
capability to determine suitable actions for the MR to advance towards the destination while circumventing 
obstacles. Each action executed by the MR is accompanied by a reward, with the path yielding the most 
desirable outcome receiving the highest reward. The outcomes of the simulations conducted on the Robot 
Operating System 2 (ROS2) corroborate the effectiveness of this Deep Reinforcement Learning 
technique for the task of obstacle avoidance.  
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1 INTRODUCTION 

The evolution of robots is fundamentally transforming 
human existence. Concurrently, there is a growing 
emphasis on the challenges of path planning and obstacle 
avoidance for MRs [Dang 2023a]. The task of charting a 
course for a MR is commonly segmented into two distinct 
problems: in known and unknown environments. 
Conventional techniques like A* and Dijkstra  are frequently 
utilized on grid-based maps derived from SLAM 
(Simultaneous Localization and Mapping) [Liu 2021]. 
Nonetheless, unfamiliar settings present notable hurdles. 
Employing algorithms designed for known environments 
typically necessitates recalculating paths upon 
encountering new obstacles. This can result in the MR 
becoming trapped in a cycle, unable to identify a feasible 
route. Furthermore, if the MR reaches its destination, the 
path may only be optimal within the existing environment 
[Dang 2023c]. 

Rapidly exploring random tree (RRT) [Dang 2023c], a well-
established technique devised for MRs in unfamiliar 
environments, constructs a "tree" using points on the map. 
Branches of the tree are randomly produced and linked to 
the nearest point until a path is established from the starting 
point to the goal. An ongoing challenge for this algorithm 
and its variations is ensuring path smoothness. Another 
method for path planning in unknown environments is the 
artificial potential field [Li 2024], which views the MR as a 

point influenced by forces in a field where the target exerts 
a positive force, and obstacles exert repulsive forces. By 
responding to these forces, the MR can determine an 
efficient path to the goal. However, this approach may 
encounter the issue of local minima, hindering the MR's 
progress. 

Recently, DRL has emerged as a prevalent machine 
learning technique for MRs [Shivkumar 2024]. Through 
data acquisition from sensors, the MR selects actions 
based on its observations, enabling it to make informed 
choices over time. Researchers often opt for LiDAR 
sensors to collect environmental data for DRL tasks, yet 
LiDAR's limitations in detecting low obstacles and 
susceptibility to signal interference pose challenges 
[Maulana 2018]. Consequently, integrating multiple sensors 
like GPS and IMU imposes a computational burden on the 
MR's hardware [Dang 2023d]. Alternatively, some 
researchers solely utilize a camera for the MR, although this 
approach burdens the hardware due to the algorithm's 
reliance on full-image states. In summary, this paper aims 
to implement DRL on the MR equipped with a stereo 
camera, offering the following contributions: 

- Utilization of the YOLO-v8 model for obstacle 
detection, followed by depth estimation to extract 
relevant pixels from the camera image as the MR's 
state.  
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- Development of a reward system and actions to guide 
the MR towards the goal.  

2 PROPOSED METHOD  

2.1 MR’s Environment 

DRL comprises six fundamental elements: agent, 
environment, observation, state, neural network, action, 
and reward. The agent, in this context, pertains to a MR, 
serving as the principal entity engaging with the 
environment and executing actions. The environment 
represents the framework within which the agent functions, 
offering observations, states, and responses to actions. 
Observation denotes the visual data captured by the agent 
through its camera. Following processing, this visual data is 
transformed into essential numerical values, collectively 
referred to as the state. 

 

Fig. 1. Operating procedures of reinforcement learning.  

A neural network is comprised of nodes within a layer, 
where the input corresponds to the values present in the 
state, and the output signifies the likelihood of different 
actions taking place. In this context, the actions of the MR 
entail navigating within the initial spatial configuration. The 
collaborative operation of elements, utilizing past actions to 
generate novel actions, is formally referred to as a Markov 
Decision Process (MDP) as illustrated in Fig. 1 [Adjei 2024]. 

2.1.1 Observation and States 

The state of the MR is expressed in Eq. (1): 

 ob posstate s ,s ,      (1) 

where sob is the distance from MR to obstacles; spos is the 
position relative to the destination. 

 

Fig. 2. YOLO-v8’s architecture [Reis 2023]. 

a). The obstacles state 

The distance between the MR and the objects situated in 
its frontal direction is determined through the utilization of a 
depth camera. Initially, the RGB images acquired by the 
camera will undergo processing by the YOLO-v8 model 
(see Fig. 2) for the purpose of recognizing obstacles and 
ascertaining the pixel coordinates corresponding to their 
centers. Therefore, the object’s center coordinates helps to 
minimize the computational data and supports the path 
point search algorithm to satisfy the award functions of the 
proposed DRL method. Since the MR uses a depth camera, 
which consists of two small cameras with the same focal 
length. This setup helps the camera capture two slightly 
different images. Estimated distance to any pixel can be 
calculated as: 

f T
Z ,

d


      (2) 

where: f is the small camera’s focal length; d = xl -xr is the 
disparity in the horizontal coordinate of a pixel in one image 
relative to its corresponding pixel in the other image (see 
Fig. 3). 

 

Fig. 3. Depth map estimation. 

Then, a depth map is then created in Fig. 4: 

 

Fig. 4. Depth image. 

The distance data between the MR and the obstacles is 
obtained by calculating the distance to the centroids of 
these pixels in Fig. 5. To streamline the procedure, the 
frame of the MR is segmented into five parts, allowing for 
the detection of the closest object within each segment, in 
Eq. (3). 

 ob 1 2 3 4 4s d ,d ,d ,d ,d ,     (3) 

where 
1 2 3 4 4d ,d ,d ,d ,and d are defined according to the 

object’s position in Fig. 5.  
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Fig. 5. Images from the camera are used as MR’s state. 

b). The position state 

 

Fig. 6. Distance to goal and heading of the MR’s state 

The state of the MR's position is determined in Eq. 4. 

 poss d, ,       (4) 

where: d is distance to the destination and  is its direction 
relative to the destination (heading angle). 

2.1.2 Rewards 

The MR's objective revolves around navigating towards the 
designated destination while circumventing obstacles, thus 
prompting an assessment of the appropriateness of each 
MR’s action in accordance with these delineated criteria. 
Any movement by the MR that contributes to its proximity 
to the destination will warrant a reward. The attainment of 
the destination will culminate in the allocation of a 
substantial reward. Conversely, an encounter with an 
obstacle will precipitate a noteworthy penalty. Hence, the 
function award is constructed by pseudo code as follows: 

FUNCTION REWARD 

   Input:  ob diss ,s  

   Output: reward, done 

   done:False 

   reward: 0 

   If  diss 1 HEADING _ THRESHOLD:  

      reward = 

 disS 0

ABSOLUTE _ DISTANCE2  

   For i in sob: 

      If    i ERROR _ DISTANCE:  

             reward = 100 

             done = True 

      If  diss 0 GOAL _ THRESHOLD:  

             reward = 300 

             done = True 

2.1.3 Actions 

 

The mobility of a mobile MR is determined by its linear 

velocity vl and angular velocity , in Eq. (5). 

 lV v , .        (5) 

Next, the MR will be equipped with five predefined angular 
velocities in two directions to facilitate fast or slow rotations 
as needed, in Fig. 7. Meanwhile, the linear velocity will 
directly relate to the reward it receives, in Eq. (6). 

 0 1 1 2 2, , , , .          (6) 

Then, (5) and (6) yields to Eq. (7) 

lv v reward.       (7) 

 

Fig. 7. MR consists of five fixed angular velocities. 

Hence, this approach ensures that the MR begins its search 
at a high speed, gradually reduces it, and eventually halts 
upon reaching the destination. 

2.2 Models 

The model employed in this investigation is the Deep 
Neural Network. Comprising two layers, with each layer 
containing 32 nodes, this network takes the values of state 
as input and predicts the action of the MR as output. The 
optimization technique utilized is the Adam function [], 
accompanied by the Rectified Linear Unit (ReLU) activation 

function  y max 0,x , and the Mean Squared Error (MSE) 

is employed as the loss function. 

 
2n

i i

i 1

1 ˆMSE Y Y
n 

      (8) 

2.2.1 Traning Model 

Once there are models to use, MRs will be trained T times, 
each time there will be a limit of steps ST according to the 
following algorithm “Train Robot” of Deep Q-Network : 

TRAIN ROBOT 

   Input: The state 

   Output: Q-value (from which action will be selected) 

   Initialize memory M 

   Initialize neural network policy_dqn 

   Initialize neural network target_dqn 

   Initialize best_reward, mini_batchsize 

   Initialize array rewards 

   for episode i=1 to T: 

   Initialize current_state, terminal=False, rewards[i] 
=0, current_step=0 

   if current_step < ST and terminal = = False:  

   # If mobile robot is moving 

   action random with function ε - greedy else 

      action argmax policy_dqn (with input = 

current_state) 

   new_state, reward, terminal=step(action) 

   #update information when MR action 
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(a)                                                     (b) 

   rewards[i]+ =reward #update total reward in each 

step 

   current_step+=1 

   save (current_state, action, new_state, reward, 
terminal) to memory M 

   current_state = new_state 

else: #if mobile robot crash obstacle or went to goal 

   if rewards[i] > best_reward: 

 update best_reward and save policy_dqn 

   if length of memory > mini_batchsize: 

      pick random mini_batchsize from memory M to 
Function optimize Q-values 

      after N step then copy from policy_dqn to 
target_dqn 

reset current_state, terminal 

The policy_dqn and the target_dqn are similar in structure 
but have different roles. The policy_dqn network is the main 
network used to select actions during training and practice 
in the environment. Therefore, policy_dqn is continuously 
updated to predict Q-values for actions based on the state 
and select the next action. The target_dqn network is used 
to stabilize the training process and provide target Q-values 
to calculate the loss function when training policy_dqn. 

2.2.2 Optimizer Q-values 

The optimizer function will calculate the current Q-values 
and target Q-values for each state and action in the 
minibatch. Then it will calculate the loss function between 
the two values according to the function MSE. Finally, it will 
update the parameters of the DQN model using Adam 
optimizer to minimize the value of the Loss function [Liu 
2023]. The optimizer function is repeated in the following 
model in function optimize Q-values: 

FUNCTION OPTIMIZE Q- VALUES 

   Input: Mini_batchsize 

   Output: Optimized model 

   Initilize current q_list, target_q_list 

   for current_state, action, newstate, reward, 
terminal in mini_batchsize: 

   if terminal = = True: 

      target = reward 

   else: 

      target=reward + discount_factor*max_target_dqn 

(with input=new_state) 

   current_q=policy_dqn(input=state) 

   current_q_list append current_q 

   target_q = target_dqn (input = state) 

   target_q[action] = target 

   target_q_list append target_q 

   loss = MSE (current_q_list, target_q_list) 

   optimize the model by Adam 

3 EXPERIMENTAL RESULTS AND DISCUSSION 

The following experiment is conducted to verify the 
correctness of the approach. Based on the experimental 
system configuration as follows: CPU: Intel Core™ i5-
10300H 2.5Ghz, RAM: 16GB DDR4, GPU: NVIDIA GTX 
1650Ti 4GB GDDR6, ROS2 and GAZEBO simulator are 
installed. A differ-entail drive MR equipped with a depth 
camera is spawned in a gazebo world with 6 simulated 

persons for training. For each of 1500 episodes, the MR will 
take 300 actions. The reward for reaching the goal at (5, 5) 
is 300, while colliding results in a penalty of -100. 

 

 

Fig. 8. Simulation environment with (a): three wheeled MR 
and (b): obstacles and goal position.   

The MR's goal is to move to achieve the highest reward, 
which means finding the optimal path to the destination 
while avoiding obstacles, in Fig. 8. In Scenario 1, the MR 
will explore the map by moving randomly. In the following 
episodes, the MR will move closer to the destination with 
increasingly prioritized paths thanks to DRL.  

 

 

 

 

Fig. 9. MR’s feasible path planning in a simple environment. 

After 1500 episodes of 8-hours-training, the simulation 
shows that the MR was able to create a feasible path to the 
goal while avoiding the obstacles. In Fig. 9, four snap shots 
of Fig. 9a to 9d illustrate that the MR has found the optimal 
way to move in a narrow simple environment with many 
obstacles. Continuously updating the state to determine the 
distance to the center of gravity of the object helps the 
object to move between obstacles more accurately. Fig. 10 
shows that calculation process of reward through time-
varying. Hence, the value of the reward is stable, meeting 
the optimal requirement at 1500 episodes. 

                                                   (a)                                                                           

                                                    (b)                                                                          

                                                    (c)                                                                          

                                                     (d)                                                                          
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Fig. 10. Average reward through times. 

Scenario 2 is created more complex with 20 simulated 

objects. For each episode, it will perform 300 actions, get a 

score of 300 after reaching the target position (7,10), or be 

-100 if colliding with the object. Four snap shots of Fig. 11a 

to 11d show that MR obtained the feasible path after 2000+ 

episodes. In Fig. 11, the MR can find its way to the 

destination after avoiding obstacles. Avoiding obstacles in 

a large environment makes the MR have a more complex 

path and takes more training time. However, the proposed 

method has still been achievable in moving to the 

destination in an unknown environment with many different 

obstacles. 

 

 

Fig. 11. The obtained feasible path after 2000+ episodes. 

Although the environment becomes more complex and 

larger, the value of the reward has still been stable, meeting 

the optimal requirement at 2000 episodes. 

 

Fig. 12. Average reward through times in the larger 
environment. 

Figs. 10 and 12 show the average rewards the MR earns 
after each episode. It's clear that these rewards increase 

over time, suggesting the MR is steadily advancing toward 
the goal, thereby improving its success rate in reaching it. 

In the 6 x 6 (m) spatial environment, MR finds the way to 
the destination in Episode 189, taking about 1 hour. In the 
remaining environment, MR finds the way to the destination 
in Episode 382, taking about 2.2 hours. Hence, MR tries to 
find the optimal path between the obstacles in complex in 7 
x 10 (m). Table 1 illustrates the feasible path after 
completing training. 

Tab. 1: Detailed metrics in two environments 

Environment First success episode  Training time  

6x6(m) having 8 
obstacles 

Episode 189 8 hours 

7x10(m) having 
12 obstacles 

Episode 382 3.5 hours 

 

In the comparison with [Prasuna 2024], although the DQN 
method is simple, easy to apply and combines well with 
YOLO-V8 using depth camera, the model has poor 
performance, leading to unstable results. Because, our 
proposed method is designed base on DRL combining with 
the object’s center of gravity technique to reduce the traning 
parameters and data. After obtaining 2D image 
segmentation, optimal MR’s path planning will be 
successfully. 

4 CONCLUSIONS 

The paper proposed a path planning and obstacle 
avoidance strategy for a camera-equipped MR. First, the 
image from the camera will be processed by YOLO-v8 to 
detect the positions of obstacles. This information will be 
combined with the depth map, selecting specific pixels as 
the state representation for the MR. Subsequently, a 
velocity function proportional to the reward will be applied 
to help the MR adjust its speed appropriately. Simulation in 
Gazebo and the graph of average rewards have 
demonstrated the validity of this approach. The MR’s 
perception system is based on Deep Reinforcement 
Learning combining with YOLO v8. Therefore, the ability to 
find the optimal path in an unknown environment becomes 
efficient. In addition, the study also shows the ability to 
avoid obstacles with complex height obstacles by 
determining the distance to the center of the obstacle. 
However, from the research results, the training is still time-
consuming, and the number of training sessions is still 
large. Therefore, improving the environment and model to 
help MRs find their way more efficiently is essential in 
developing MRs. Finally, the DRL method can be applied in 
changing environments, where there are many people and 
obstacles are not too large. Similar environments such as 
indoors or industrial can be suitable for applying this 
method. 
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