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Abstract 

While dealing with dynamic scenarios, mobile robot (MR) path planning (PP) has proven to be extremely 
challenging. To overcome difficulties with grid-map representation, the paper proposes a hybrid path 
planning strategy. In a typical setting, an A-star algorithm first generates a global path planning (GPP). 
To ensure safe obstructive avoidance, the modified heuristic function is enhanced with a risk cost 
coefficient adjusted according to the distance to the nearest obstacle. Then, GPP is improved by 
eliminating redundant nodes, and smoothing algorithms. Furthermore, local path planning (LPP) has 
enhanced the ability to avoid obstacles in local areas by using adaptive dynamic window approach (DWA). 
The obtained path is hardly continuous after eliminating unnecessary path nodes and the required re-
calculation LPP based on DWA. Consequently, straight, and curved segments are joined into the 
continuous polyline smoothed by the Bezier curves. The proposed hybrid PP has been shown to be 
feasible and to produce optimal outcomes in both simulations and experiments.  
 
Keywords: 

A-star algorithm, Bezier curve, dynamic window approach (DWA), obstacle avoidance, hybrid path 
planning 
 
 
 

 

1 INTRODUCTION 

Simultaneous localization and mapping (SLAM) and motion 
planning represent two of the most pivotal challenges 
encountered by MRs [Maulana 2018]. Path planning (PP) 
is a term utilized within the field of robotics to describe the 
procedure of decomposing the intended movement task 
into distinct motions that adhere to movement constraints 
and potentially enhance a particular aspect of the motion 
[Patle 2019]. PP can be categorized broadly into two 
primary methodologies: GPP and LPP [Dang 2023a]. GPP 
devises an optimal route on a known global environment. 
Traditionally, techniques like Dijkstra [Alshammrei 2022], A-
star [Dang 2023b], RRT-star [Dang 2023c], and D-star [Lin 
2023] have served as the foundation of GPP. While the 
Dijkstra algorithm is uncomplicated in static environments, 
it tends to exhibit reduced efficiency and slower path 
optimization in larger, more dynamic settings [Alshammrei 
2022]. The A-star algorithm, an advancement from Dijkstra, 
incorporates a heuristic function that facilitates rapid 
identification of the shortest path on grid maps [Dang 
2023d]. Nevertheless, its planned trajectory might bring the 
mobile robots (MRs) into close proximity with obstacles, 
potentially endangering them with collisions. The dynamic 
D*Lite algorithm, a progression tailored for dynamic 
environments, tackles concerns related to efficiency and 
power consumption [Lin 2023]. Despite its efficacy in 
unfamiliar environments, D*Lite is burdened by certain 

drawbacks, such as sluggish planning efficiency, numerous 
path nodes, and turning points in extensive environments. 
The local path planning algorithm represents a 
methodology designed for dynamic environments [Dang 
2023e]. Conversely, LPP strategies excel in real-time 
obstacle evasion but lack the holistic supervision provided 
by GPP, often resulting in suboptimal path choices in the 
broader scope of the robot's mission. MRs frequently rely 
on approaches like the Artificial Potential Field (APF), DWA, 
and Time Elastic Band (TEB) to maneuver around 
obstacles [Liu 2021]. The APF is renowned for its high 
safety and smoothness levels during practical operations. 
Nevertheless, its effectiveness is confined to local search 
regions, especially when obstacles are positioned near the 
target, potentially hindering MRs from reaching their 
designated destination [Li 2024]. The DWA, serving as a 
method to sample information from the ever-changing local 
surroundings, enables MRs to anticipate the subsequent 
motion state based on their current state. In comparison to 
APF, DWA accomplishes swifter planning, guarantees 
safety and dependability, and upholds robust real-time 
performance [Yang 2022]. Nevertheless, while DWA 
adeptly evades both stationary and moving obstacles, its 
dependency on global environmental elements stands out 
as a notable constraint. This paper proposes an optimal 
HPP algorithm for MRs. A novel heuristic function is 
integrated with coefficients linked to distance and direction 
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to streamline search time and diminish the number of steps 
when constructing GPP based on A-star. Furthermore, 
DWA bolsters the velocity and acceleration of MRs in 
response to local dynamic environmental alterations in 
accordance with the GPP direction. To summarize, the 
proposed methodology refines GPP data to navigate 
around dynamic obstacles, thereby amplifying real-time 
performance and flexibility. 

2 GPP BASED ON IMPROVED A-STAR  

 

Fig. 1: MR’s grid map-based environment with (a): a grid 
map, (b): a obstacles having risk surrounding and (c): the 
values of different cells in grid map. 

The MR’s environment is modelled by the grid-map method 
that obstacle cell has value of 1, movement cell has value 
of 0, and the risk surrounding obstacle has value of 2, in 
Fig. 1. Based on A-star heuristic function [Dang 2023f], a 
new grid map is reconstructed to ensure safe obstructive 
avoidance (see Fig. 1c) with a risk cost coefficient adjusted 
according to the distance to the nearest obstacle (see Fig. 
1b). Then, (1) selects the nodes being the closest distance 
from the start node S to the goal node G (blue dashed line). 

       f n g n h n r n ,     (1) 

where n: the current node; g(n): the actual cost from n to 
the following node: h(n): the predicted cost from n to goal 
(G); f(n): the total cost evaluation; and r(n): the risk cost 
depending on the distance to obstacle. 

Because only the distance without the direction is 
considered in Eq. (1), which leads to the difficulty of 
trajectory optimization, reduces the search efficacy in larger 
environment. In complex scenarios, the robot will fall into 
loops and traps and cannot react to moving obstacles. A 
modified h(n) in Eq. (2) aims to solve the existing problems 
in (1) and support the provision of additional information to 
DWA when applied to LPP. 

         f n g n aL bcos h n r n ,       (2) 

where the current MR’s position L is defined as follows: 

   L dx dy 2 2 min dx,dy ,       (3) 

and  is the angle of the first direction from the parent node 
to the expanded node and the second direction from the 

expanded node to the targeted node. The value of cos is 
changed from -1 to +1 to MR always reach to the target 
node while avoiding the obstacles. Therefore, the search 
efficiency is improved with the optimal time processing. One 
of the disadvantages of the A-star algorithm is that the 
number of node points in the search algorithm is too 
redundant. 

 

 

Fig. 2. The JPS with (a): successful JPS; (b): unsuccessful 
JPS; and (c): applied JPS in GPP (red dashed line). 

When the robot finds a path and avoids it in a dynamic local 
environment, the calculation process will be repeated, 
causing the number of calculation steps to increase, directly 
affecting the robot control process when following the 
navigation plan, causing delays. During the calculation and 
data transmission process, it also causes errors that affect 
the quality of the control process. The proposed algorithm 
introduces the JPS technique to eliminate redundant points 
(see Figs. 2a and 2b), combined with the improved Bezier 
curves to connect straight and curved segments into the 
continuous smooth trajectory in following Eq. (4): 
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 
   (4) 

 

Fig. 3. The fifth order Bezier curve (blue dot line) for three 
path points of P1, P2, and P3 using 6 Bezier points of (B0, 
B2, B5). 

One distinguishing feature of a Bezier curve is that the 
tangents at the endpoint are entirely dictated by the 
adjacent control points. Fig. 3 illustrates the fifth order 
Bezier curve with six control points of (B0, B1, …, B5) in 
which (B0, B1, B2) and (B3, B4, B5) are collinear, 
respectively. By utilizing parameterization of the control 
points within the Bezier curves, the MR’s trajectory is able 
to effectively follow prescribed path points Pi while adhering 
to specified kinematic constraints. 
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Finally, the trajectory optimization aims to minimize path 
length, reduce steering angle variations, and minimize 
overall cost. Additionally, a smoothed GPP is generated 
through the seamless connection of linear path segments 
and Bezier curves in Figs. 2c. 

3 LPP BASED ON ADAPTIVE DWA 

Firstly, MR’s kinematics model each t is illustrated in 
following Eq. (5): 

   
   
   

t t

t t

t

x t 1 x t v tcos

y t 1 y t v t sin ,

t 1 t t        

    


    
     

   (5) 

Throughout the optimization process of the objective 
function delineated in optimal GPP, the MR’s dynamic 
window is modified in an adaptive manner based on speed 
constraints, acceleration constraints, and the necessity to 
avoid obstacles. LPP uses GPP points for local target 
points. Hence, the respective sampling spaces can be 
characterized as follows: 
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 (6) 

where v0, and 0: the MR’s initial values of v and , 

respectively. vmax, max, amax, and max stand for the peak 

values of the MR's speed, angular speed, linear 

acceleration, and angular acceleration, respectively. t 

indicates the time interval between samples. The above 

given restrictions imposed on the DWA for the velocities vr 

based on the speed space vs, in Fig. 4. Then the area vr is 

defined as the intersection of (vs, va, vd) in Eq. (7) 

r s a dv v v v        (7) 

 
Fig. 4. The representation of MR’s speed space. 
While all conditions in Eq. (6) are satisfied, it is crucial to 
enhance the optimization of the DWA's evaluation function 
to effectively discover the optimal LPP. Eq. (8) presents the 
formulation of the adaptive DWA's evaluation function for 
MR.  

        F v, *head v, *dist v, *vel v, ,          (8) 

where head (v, ): the azimuthal deviation effectively 

ensuring the MR follows the locally optimal path; dist (v, ): 
the distance between the MR’s predicted path end and the 

nearest obstacle. vel (v, ): the velocity of the current 

simulated trajectory; : the filtering coefficient; , , and : 
the weighting coefficients. Fig. 5 presents an azimuth 

assessment into the evaluation process ensures the 
fulfillment of various objectives including identifying the 
shortest route, navigating dynamic obstacles, and 
maintaining smoothness. 

 

 

Fig. 5. The adaptive DWA's evaluation function with (a): 
DWA candidate path and (b) Optimal DWA path. 

In summary, GPP cannot handle dynamic obstacles 
changing their position. Therefore, LPP based on DWA 
deals with dynamic obstacles. The optimal strategy of 
hybrid path planning is illustrated in Fig. 6. 

 

Fig. 6. The optimal strategy of hybrid path planning (HPP). 

4 RESULTS AND DISCUSSION  

 

Fig. 7. The three wheeled MR equipped Lidar and Jetson 
Nano. 

On a cutting-edge computer boasting 32 GB of Ram, 
powered by an Intel Core i7-11400H processor, with a VGA 
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GeForce RTX 3060, and running Windows 11, a vast 50x50 
grid map was meticulously crafted, with the starting point 
marked as S (0, 0). Employing a three-wheeled mobile 
robot (see Fig. 7), the forthcoming experiment is conducted 
to validate the viability of the suggested PP.  

 

 

Fig. 8. The improved GPP using JPS and Bezier in simple 
environments with A-star path (blue line) and improved A-
star path (red line). 

In scenario 1, the number of static obstacles is 
concentrated in the lower left corner, the space between the 
obstacles is large. Therefore, the improved A-star algorithm 
can easily build a feasible navigation plan connecting the 
starting point S to the destination point G. However, JPS 
and smoothed technique have also been effective in 
smoothing the improved A-star path. path. path. This result 
will also help the MR move stably, the turning angle 
changes little and follow the guidance GPP. 

 

Fig. 9. The improved GPP using JPS and Bezier in complex 
environments with A-star path (blue line) and improved A-
star path (red line). 

Scenario 2 increases the difficulty with the number of static 
obstacles and density distributed in the environment. In 
Figure 9a, using the enhanced heuristic function, the A-star 
algorithm can establish navigation to avoid obstacles with 
different levels of safe distance (gray zone). Incorporating 
a fifth degree Bezier line makes GPP smoother, meaning 
the change in angular direction when MR tracking trajectory 
also changes little. In particular, MR still ensures the ability 
to avoid collisions with the corners of obstacles while still 
maintaining the direction of movement (green dashed line 
circle). As the environment becomes more complex in Fig. 
9b, we can easily see that the A-star control path points 
become more numerous, which affects the search speed of 
the algorithm. Besides also increasing the travel distance, 
the application of JPS and smoothed technique helps to 
dramatically reduce Pi control path points. Furthermore, the 
Bezier curve also supports the process of smoothing the 
obtained GPP curve. 

In Fig. 10, the MR executes the optimal strategy of HPP in 
accordance with a secure LPP combining with the adaptive 
DWA. The depiction in Fig. 10a illustrates the MR's local 
path, which facilitates evasion of both stationery and 

dynamic obstacles 1 and 2. The MR, guided by the 
innovative hybrid path planning approach, detects the initial 
static obstacle as depicted in Fig. 10b and successfully 
navigates around it following the prescribed GPP. 
Subsequently, upon executing a turn, the MR leverages the 
DWA method to compute the distance from the diagonally 
advancing obstacle 1, thereby evading it effectively. The 
efficacy of the proposed hybrid path planning becomes 
evident when dynamic obstacle 1 maneuvers, causing a 
constriction in the available space for movement. This 
successful negotiation of a narrow passage to the target 
destination by the robot in Figs. 10c and 10d underscores 
the effectiveness of the hybrid path planning method. 

 

 

 Fig. 10. MR’s Optimal HPP using adaptive DWA in local 
areas with (a): turning around the static obstacle conner, 
(b): adjusting the MR’s speed when discovering dynamic 
obstacle, (c): avoiding a dynamic obstacle and turn to move 
through the narrow area, and (d): moving through 
successfully the narrow area. 

However, LPP using adaptive DWA will need to recalculate 
in each local region leading to increased computation. In 
practical control, stable and accurate control process is 
always required, so our proposed optimal hybrid path 
planning will require appropriate data processing and 
calculation systems and is also a development direction for 
integrating MR's perception system with optimized training 
resources and processing speed. 

5 CONCLUSIONS 

The paper proposed the optimal strategy of hybrid path 
planning, combining strategies to optimize various tasks 
such as dynamic obstacle avoidance and trajectory 
smoothness. Using the A-star algorithm as a foundation, 
unnecessary nodes in the GPP are eliminated by applying 
JPS. Whether faced with stationary or moving obstacles, 
MRs navigates with cobstacleszing customizable danger 
zones around the obstacles. Additionally using fifth degree 
Bezier curves, MR’s path is continuously refined to ensure 
a steady and secure movement. Hence, after completing 
LPP, optimal HPP is created a smoothed GPP connecting 
linear control path segments and curves. Ultimately, this 
innovative technique effectively tackles the complexities of 
dynamic obstacles through enhancements in the adaptive 
DWA during LPP. 
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