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Abstract 

The performance of the final part of the turning process, a topic of practical importance, heavily depends 
on the cutting parameters. Surface quality, a crucial product attribute in manufacturing, often tops 
consumer demands during machining due to its significant influence on product functionality. This paper 
assesses the correlation between the detected vibration signal, statistical parameters (Crest, Kurtosis 
and I-kaz3D coefficient) and surface roughness and provides valuable insights for practical applications. 
When the tool experiences vibrations during material removal, these oscillations leave a ripple effect on 
the surface of the workpiece. We aim to determine the impact of cutting parameters on surface roughness 
while turning 42CrMo4 steel using a carbide tool insert. Cutting parameters, such as spindle speed, feed, 
and depth of cut, were used. Signal processing is carried out using different techniques to identify the 
effect of the cutting parameters on vibration signals. Finally, we delve into the interaction effects between 
the cutting parameters, vibration signals and surface roughness, offering a comprehensive understanding 
of real-world manufacturing scenarios. Higher I-kaz3D coefficients correspond to higher surface 
roughness values. The I-kaz3D coefficient decreases as the surface roughness measurements decrease, 
indicating that the I-kaz3D technique can accurately indicate an increase or decrease in surface 
roughness. On the other hand, the cutting force Fc was the component most strongly correlated with 
surface roughness (Ra), yielding the best results across all indices (adjusted R²adj = 95.1%, er=.8 ± 
2.3%). 
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1 INTRODUCTION 

Conventional processing operations, which include turning, 
milling, grinding and drilling, are among the most common 
processing operations in the metalworking industry. With 
the application of computer-aided design methods, 
computer-aided manufacturing (CAD/CAM) and open 
architecture control systems (OACs, which are control 
systems that allow for easy integration and modification of 
software and hardware components), technological and 
processing systems have reached a point where the need 
for flexibility and adaptability of production is at the peak of 
demand, and for a large number of companies whose 
technological systems are not equipped with state-of-the-
art surveillance and management systems at the edge of 
cost-effectiveness. 

The processing of materials by cutting is a complex task 
characterised by the dynamic behaviour of the system tool-
workpiece-clamping device-machine. The system's 
dynamic behaviour is determined by the excitation forces 
acting on the system and the stiffness of the system itself. 
The oscillation in the system is highly undesirable, as it can 
directly impact the workpiece's quality and the tool's stability 

and even damage the system's elements and assemblies. 
The development and application of modern technologies, 
such as laser cutting, waterjet cutting, and plasma cutting, 
in obtaining products without subsequent processing is a 
limited domain. Even today, cutting processing remains the 
most used method in production practice. This highlights 
the urgent need for the metalworking industry to stay 
updated with the latest technologies to meet the evolving 
demands of the market. Turning is one of the most critical 
manufacturing operations because parts manufactured by 
casting, forming, or other shaping processes often require 
a further metal-cutting operation before they are ready for 
use. 

The quality of surface roughness is crucial in achieving the 
desired product quality. Manufacturers specify the desired 
surface roughness to meet requirements such as fatigue 
strength, corrosion resistance, precision fits, tribological 
properties, and aesthetics. One commonly used model to 
assess surface roughness considers the feed rate and nose 
radius. While these factors significantly impact surface 
roughness, the model does not provide an accurate 
prediction. This is because factors such as machine tool 
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rigidity, geometry and condition, use of cutting fluid, cutting 
parameters, and vibrations are not considered. Hence, 
estimating surface roughness in the metal-cutting process 
is becoming a significant research area. Unsurprisingly, 
many research papers on predicting surface roughness 
have been published based on regression modelling, 
artificial neural networks, fuzzy logic, and neuro-fuzzy 
systems. A predictive model for surface roughness based 
on cutting parameters using response surface methodology 
has been extensively documented in the literature [Cakir 
2009] and [Bouacha 2010]. 

Surface roughness varies during the machining process as 
the tool wears out. Consequently, signals representing the 
interaction between the tool and workpiece should be 
incorporated into the in-process surface roughness 
prediction model. To achieve this objective, the model can 
use the acceleration of the tool holder and cutting forces 
during the process as inputs. Developed in-process multiple 
regression surface roughness prediction system using feed 
rate and acceleration along the x, y and z-axis was 
presented in [Kirby 2004]. Upadhyay et al. [Upadhyay 2013] 
used the acceleration amplitude of tool vibrations in axial, 
radial and tangential directions to develop multiple 
regression models to prediction surface roughness. Plaza 
et al. [Plaza 2017] proposed two methods for enhanced 
surface roughness monitoring based on the application of 
singular spectrum analysis (SSA) to vibration signals 
generated in workpiece-cutting tool interaction in CNC 
finish turning operations and the grouping analysis of 
correlated principal components (G-SSA). A multi-sensor 
data fusion system was introduced for real-time surface 
quality control, incorporating cutting force, vibration, and 
acoustic emission signals, as presented in [Plaza 2018]. 
Four signal processing methods were analysed: time 
domain analysis (TDA), power spectral density (PSD), 
singular spectrum analysis (SSA), and wavelet packet 
transform (WPT). The mean deviation of the assessed 
profile (Ra) is the critical parameter for monitoring surface 
quality in machining processes. Ra indicates a product's 
surface quality and reflects the cutting process's behaviour. 
It is directly influenced by factors such as cutting 
parameters, tool geometry, cutting fluids, tool wear, and 
chatter. Time-domain analysis (TDA) is the most widely 
used signal analysis method for monitoring surface finish. 
Hessainia [Hessainia 2013] utilised TDA-processed 
vibration signals and cutting conditions to monitor the 
parameter Ra, employing a small sample of 27 data points 
for regression models and validating them with the same 
data. Kirby et al. [Kirby 2007] used a single component of 
vibration signals and cutting conditions to monitor Ra. They 
processed the vibration signal with TDA, using 87 data 
points for fuzzy logic predictive models and validated the 
models with seven workpieces selected under non-random 
cutting conditions. The experimental investigations on the 
influence of technological parameters on the machining 
accuracy and quality in the milling of cylindrical thin-walled 
structures are shown in [Sredanovic 2022]. The surface 
roughness of the workpiece under different cutting 
conditions in machining using acoustic emission (AE) and 
vibration signature in turning has been investigated in 
[Bhuiyan 2014]. The investigation has shown that the AE 
and vibration components can effectively respond to 
different occurrences in turning, including surface 
roughness. Asiltürk et al. [Asiltürk 2016] determined the 
effects of the cutting parameters on the surface roughness 
using ANOVA, surface response methodology and Taguchi 
orthogonal design. 

The signal processing methods used in the presented 
literature are primarily based on different signal 
decomposition techniques (in the time and frequency 
domain). After that, the relationship between statistical 
parameters and the roughness of the treated surface is 
investigated. These techniques require much time and 
higher computer resources, which in actual production can 
lead to delays and interruptions in the production cycle. 
However, this method is complicated to apply in real-time. 
On the other hand, the connections between the vibration 
signals and the forces are analyzed individually in the 
presented literature. 

This paper has been carried out to develop a more reliable 
condition monitoring system for surface roughness using 
vibration phenomena and statistical parameters. Three 
accelerometers and a triaxial dynamometer have been 
used to measure the acceleration and vibration generated 
by the cutting force. The raw signals (time domain analysis) 
have been used to correlate the sensor’s output with the 
different statistical parameters and with the surface 
roughness. We thoroughly analysed different methods for 
extracting features from the sensor signals, focusing on 
time-domain signal processing. We then studied how the 
statistical characteristics of the signals relate to the surface 
roughness by analysing multiple regression. This study's 
original contribution is determining the best sensor setup 
and signal feature extraction method in terms of their ability 
to predict surface roughness in real-time by statistical 
characteristics without needing offline parameters while 
ensuring reliability and processing efficiency.  

2 EXPERIMENTAL SETUP AND METHODOLOGY 

This study aimed to examine the impact of cutting 
parameters and tool vibrations on surface roughness and 
establish a relationship between roughness parameters 
and signal characterisation parameters. Turning tests were 
performed under dry conditions using a numerically 
controlled INDEX GU600 lathe. The experimental setup is 
presented in Fig. 1. 

The experiments utilised cemented ISO P-grade carbide 
inserts (SANDVIK TNMG160408). The workpiece material 
was 42CrMo4 steel, with dimensions of 30 mm in diameter 
and 60 mm in length and a cutting length of 40 mm (Figure 
1). The nominal chemical composition of the workpiece was 
C = 0.34%, Si = 0.18%, Mn = 0.72%, P = 0.014%, S = 
0.015%, Cr = 0.95%, Ni = 0.165%, Cu = 0.182%, Al = 
0.005%, Co = 0.006%, and Ti = 0.002%. To avoid a 
clamping error and the resulting vibrations, the workpiece is 
pre-processed and clamped into soft clamps (Clamps 
machined for the workpiece's used diameter). The cutting 
edge was replaced after every twenty workpieces to 
minimise variability due to cutting-edge wear.  

A sensor data system was developed using MATLAB to 
concurrently process cutting force (Fc, Fr, Fv) and 
mechanical vibration (ac, ar, av) signals. The system 
employed a Kistler 9021 dynamometer and three PCB 
352C03 accelerometers (Figure 1). Acceleration vibration 
signals were sampled with a National Instruments (NI) USB 
6281 data acquisition card at 51.2 kHz. In contrast, cutting 
forces were sampled using an NI PCI 6008 card at a 
frequency of 4 kHz. The experimental design followed a 
factorial approach with three factors at varying levels, 
resulting in 120 trial combinations (six levels of the cutting 
speed, four levels of the feed and five levels of the depth), 
as outlined in Tab. 1. 
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Fig. 1. Experimental setup and measurement flow of acceleration and force signals 

Tab. 1. Cutting parameters for turning test.  

Cutting speed (V) m/min 100 125 150 190 215 240 

Feed rate (f) mm/rev 0.08 0.11 0.15 0.2   

Depth (δ) mm 0.5 0.8 1.1 1.4 1.7  

 

The surface roughness was characterised using the mean 
deviation of the assessed profile (Ra), measured with a 
Mitutoyo surftest SJ-210 device. The cut-off was 2.5 mm, 
and the evaluation length was 12.5 mm.  

The methodology outlined in this paper involved analysing 
recorded signals (Fc, Fr, Fv, ac, ar, av) using signal 
extraction methods, shown in Fig.2. The processed signals 
with the Time Direct Method were characterised using 
statistical parameters (see Tab. 1). The method for 
extracting signal features was evaluated for each sensor. 
Multiple regression was then employed as a predictive 
modelling technique to establish the relationship between 
surface roughness and the signal characterisation 
parameters, which can be used in various industries. 

 

Fig.2. Methodology of the test 

The TDA method analyses the signal registered by the 
sensor directly in the time domain, avoiding any 
transformation or decomposition. This approach ensures 
fast processing with minimal computational cost. Signal 

feature extraction in the TDA method involves parametric 
characterisation of the original signal, as captured by the 
sensor in the time domain. Statistical measurements used 
for this parametric characterisation are presented in Tab.2.  

The multiple regression predictive models were evaluated 
in several ways, each method playing a crucial role in 
ensuring the accuracy and reliability of the results. 
a) The goodness of fit to experimental data was assessed 
using the adjusted determination coefficient (Radj²); 

b) The predictive power was evaluated by the mean relative 
error (eᵣ) in predicting the experimental validation data, 
along with the variability of eᵣ measured by the standard 
deviation (sₑᵣ); and, 

c) The correlation between the data estimated by the 
predictive models and the experimental data (R). 

Out of the 120 experimental data points obtained, a 
substantial 80% were used to build the models, ensuring a 
robust and comprehensive approach. The remaining 20% 
were randomly selected for model validation. The multiple 
regression models were adjusted stepwise to include only 
the significant characterization parameters (Tab. 2) 
according to ANOVA (p-value < 0.05). All regression 
models underwent a thorough diagnosis, analyzing typical 
values, independence and normality of residuals, and 
contrasts and hypothesis tests, ensuring their reliability. 

Tab. 2 Statistical characterisation parameters 
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μx, μy, μz are the means of each signals in the X-, Y- and Z-axes respectively, 

and N is the number of data points. . 
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The TDA method extracted the signal features of cutting 
forces and acceleration by directly characterizing the 
signals using the parameters listed in Tab. 2. Statistical 
parameters are critical in signal analysis because they 
provide information about peaks and spikes in a signal. 
Their use allows for more effective monitoring of machine 
conditions, early detection of potential problems, and 
optimisation of the machining process, which can 
significantly reduce costs and increase the reliability of 
operations. To ensure the accuracy of our findings, we 
employed a multiple regression predictive model with a high 
adjusted determination coefficient (Radj²) and a low mean 
relative error (eᵣ). This precision was crucial for our 
research. We analyzed the signals independently for each 
component to optimize the characterization of the signal 
sensors (dynamometer and accelerometer) and also 
examined the fusion of the three components (Fc, Fr, Fv; 
and ac, ar, av). This methodology helped identify 
correlations between components from each sensor, 
preventing information overload in the predictive model and 
preserving its accuracy. 

3 RESULTS AND DISCUSSION  

We analyzed the relationship between statistical 
parameters and surface roughness in the first step. Then, 
the multiple regression analysis was applied only to the 
most significant statistical parameter. 

As shown in Tab. 3, the statistical analysis results reveal 
the complexity of the relationship between Kurtosis and 
crest factor in X-, Y- and Z-directions. The average of these 
values was calculated, with Kurtosis ranging from 3.99 to 
5.94 and crest factor from 4.15 to 6.25  for acceleration 
signals. The average values for cutting tools sensors were 
calculated, with Kurtosis ranging from 0.12 to 0.22 and crest 
factor from 2.15 to 3.31 for acceleration signals. The slight 
difference between these factors underscores the intricate 
nature of the relationship to vibration signals, making it 
difficult to predict the surface roughness measurement. Due 
to the large amount of analyzed data, Tab. 3 presents only 
the results for one part of the analysis. The I-kaz3D 
technique significantly contrasts the I-kaz3D coefficients 
and surface roughness (Ra), as shown in Tab. 3. The I-
kaz3D coefficients ranged from a minimum of 5.65x10⁻⁵ to 

a maximum of 11.24x10⁻⁵. In contrast, the surface 

roughness values varied between 0.855 µm and 2.553 µm 
for acceleration sensors.  The I-kaz3D coefficients ranged 
from 0.16x10⁻⁵ to 0.82x10⁻⁵ for cutting tools sensors. 

Higher I-kaz3D coefficients correspond to higher surface 
roughness values. The I-kaz3D coefficient decreases as 
the surface roughness measurements decrease, indicating 
that the I-kaz3D technique can accurately indicate an 
increase or decrease in surface roughness. 

The results obtained for cutting force and acceleration 
signals with the TDA method, a key part of our 
methodology, are shown in Fig. 3. Using the TDA method, 
the individual analysis of vibration signal models (ai) 
showed an excellent fit to the data, with an adjusted R²adj 
about 83% for all components. The two vibration 
components provided similar levels of information, with the 
feed vibration af(adjusted R²adj = 78.4%) and cutting 
vibration ac (adjusted R²adj = 86.9%) explaining most of the 
experimental data variability. At the same time, the AR 
percentage was slightly lower (64.8%). The combined 
vibration model (af+ac) and (af+ac+ar) significantly 

enhanced model prediction, improving both the fit to the 
data (92.4% and 90.5) and er (10.2 ± 3.6%). This 
demonstrates the effectiveness of the TDA method in 
analyzing vibration signal models and its contribution to our 

understanding of the relationship between statistical 
parameters and surface roughness. 

The cutting force Fc was the component most strongly 
correlated with surface roughness (Ra), yielding the best 
results across all indices (adjusted R²adj = 95.1%, er=.8 ± 
2.3%). The cutting force is crucial for maintaining tool-
workpiece contact stability and managing the flexing of the 
workpiece when machined in a cantilever setup, as this 
force acts perpendicular to the axis of rotation. These 
findings highlight the significant impact of the Fc component 
on surface roughness due to the interplay between tool and 
workpiece and the dynamic behaviour of the rotating 
workpiece. In contrast, the feed force Ffand radial force Fr 
showed weaker correlations with roughness, with adjusted 
R² values of 55.4% and 44.9%, respectively. Combining the 
force components (Fc + Fv+ Fr and Fc+Fv) small improved 
the results of the Fc force model, with data fit to 96.1% and 

95.9, though the predictive power remained unchanged 
with an erof 7.9 ± 2.1%. The above confirms that the cutting 
force Fc accounted for a more significant portion of the 
variability in the experimental data, indicating it had the 
most significant impact on surface roughness (Ra). While 
the feed and radial forces added some value, their 
contribution to the combined model was relatively small. 

 

Table 3 Results for signal statistical analysis and surface roughness 

Cutting parameters Kurtosis Crest 
I-kaz3D 

(10-5) 
Ra (μm) 

v (m/min) 
f 

(mm/rev) 
δ 

(mm) 

Acc. 

Kaave 

Force 

KFave 

Acc. 

Caave 

Force 

CFave 
Acceler. Force 

100 0.08 0.5 4.51 0.17 4.85 3.16 5.71 0.168 0.855 

240 0.08 0.5 4.58 0.19 4.87 3.18 5.65 0.164 0.884 

100 0.11 1.1 3.99 0.19 4.15 3.13 6.02 0.254 1.106 

240 0.11 1.1 4.12 0.22 4.99 2.15 6.0 0.199 1.099 

100 0.15 1.4 4.64 0.16 4.98 2.88 6.85 0.362 1.699 

240 0.15 1.4 4.49 0.12 5.2 3.07 6.11 0.285 1.282 

240 0.2 1.7 5.12 0.22 6.01 3.16 7.23 0.451 1.853 

240 0.2 1.7 5.94 0.15 6.25 3.31 11.24 0.826 2.553 
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Fig.3 Analysis of signal results with the Time Direct Method. 

 

The correlations between the estimated data and the 
validation data for the best model obtained with each 
sensor are illustrated in Fig. 4 and Fig. 5. The cutting force 
signals (Fig. 4) demonstrated the strongest correlation with 
a coefficient R = 0.965, indicating a high degree of 
agreement between the estimated and predicted values. 
This high correlation was consistent across all data ranges, 
meaning the model performed reliably regardless of the 
predicted value. However, it was noted that the model 
tended to slightly overestimate, as most of the estimated 
values were higher than the actual experimental validation 
values. 

In contrast, the vibration model (Fig. 5) showed a weaker 
correlation with a coefficient R = 0.901. This lower 
correlation was due to more excellent dispersion observed 
in the data across all value ranges, indicating that the 
estimated values were more spread out and less 
consistently aligned with the actual validation values. This 
dispersion weakened the model's reliability compared to the 
cutting force signals, which exhibited more uniform and 
accurate behaviour. 

 

Fig.4. Determined values versus experimental validation 
values for the parameter Ra with cutting force sensor 

 

Fig.5. Determined values versus experimental validation 
values for the parameter Ra with acceleration sensor 

Simulations were also performed to study the influence of 
the cutting parameters on surface roughness (Ra). The 
curves are plotted according to the v parameter, and the 
results are concluded in Fig. 6 and Fig 7.  

Figure 6 demonstrates a clear relationship between cutting 
speed and Ra values. The best Ra values are achieved at 
a cutting speed v higher than 140 m/min with a feed rate f 
= 0.08 mm/rev. Notably, the minimum Ra value of 0.55 μm 
is obtained at a cutting speed of 150 m/min. Conversely, a 
feed rate of f = 0.2 mm/rev consistently yields high Ra 
values above 1.5 μm. Intermediate Ra values are observed 
with a feed rate of f = 0.11 mm/rev. 

In Figure 7, with δ = 1.7 mm, the best surface roughness 
(Ra) values are achieved at a feed rate of 0.11 mm/rev, 
resulting in Ra = 1.15 μm at a cutting speed higher of 160 
m/min. An intermediate Ra is observed at f = 0.15 mm/rev 
at a cutting speed between 100 to 190 m/min. Notably, a 
feed rate of f = 0.2 mm/rev consistently yields higher Ra 
values, highlighting the reliability and predictability of the 
results. 

 



 

MM SCIENCE JOURNAL I 2024 I OCTOBER 

7544 

 

Fig. 6. The influence of v and f on the Ra with δ= 0.5 mm 

 

Fig. 7. The influence of v and f on the Ra with δ= 1.7 mm 

4 SUMMARY 

This study successfully developed a more reliable condition 
monitoring system for surface roughness using vibration 
phenomena and statistical parameters. Our approach used 
raw time-domain signals to correlate sensor outputs with 
statistical parameters and surface roughness. An essential 
contribution lies in determining the optimal sensor setup 
and signal feature extraction method for predicting surface 
roughness in real-time. This method uses statistical 
characteristics without relying on offline parameters, 
ensuring reliability and processing efficiency. Among the 
components analysed, the cutting force (Fc) exhibited the 
strongest correlation with surface roughness (Ra), with an 
adjusted R² of 95.1%. The correlation between estimated 
and validation data for the best model obtained with each 
sensor showed that cutting force signals had a high degree 
of agreement with a coefficient R of 0.965. However, 
vibration signals exhibited a weaker correlation due to more 
excellent data dispersion.  

In summary, our findings highlight the effectiveness of the 
TDA method in real-time surface roughness prediction, 
emphasising the importance of cutting force in achieving 
reliable and accurate predictions. This study contributes to 
advancing condition monitoring systems by optimising 
sensor setups and signal feature extraction methods, 

paving the way for more efficient and precise surface 
roughness predictions in machining processes. 
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