
 

 

MM SCIENCE JOURNAL I 2025 I OCTOBER  

8734 

 

ARTIFICIAL NEURAL 
NETWORKS: FROM 

MATHEMATICAL MODELS 
TO BIOLOGICALLY INSPIRED 
SELF-ORGANIZING SYSTEMS  
VIKTOR YU. TRUBITSIN1, ZUZANA SAGOVA2, IVAN ZAJACKO2, 

ALEKSANDR I. KORSHUNOV1 

1Udmurt Federal Research Center of the Ural Branch of 
the RAS, Institute of Mechanics, Izhevsk, Udmurt Republic 

2University of Zilina, Faculty of Mechanical Engineering, 
Zilina, Slovakia 

DOI: 10.17973/MMSJ.2025_10_2025081 

Zuzana.Sagova@fstroj.uniza.sk 

This paper provides a comprehensive analysis of the 
evolutionary development of artificial neural networks (ANNs) 
through the lens of three key generations: from simple 
perceptrons to modern spiking neural networks (SNNs) and 
prospective biophysical models. Particular attention is paid to a 
critical comparison of artificial systems with their biological 
prototypes, identifying the fundamental limitations of existing 
approaches, and justifying the need for a new paradigmatic 
direction - self-organizing networks of uniform elements 
(SNUE). The proposed SNUE concept integrates key principles 
of biological neuroplasticity with the requirements of 
computational efficiency, offering an innovative framework for 
the development of the next generation of neuromorphic 
systems. The paper provides a detailed analysis of the 
theoretical foundations, potential architectural solutions, and 
promising directions for the practical implementation of this 
approach.  
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1 INTRODUCTION  

Since the first mathematical models of neurons by McCulloch & 
Pitts [McCulloch 1943], artificial neural networks have come a 
long way in development, becoming the foundation of artificial 
intelligence. Modern ANNs demonstrate exceptional efficiency 
in highly specialized tasks (pattern recognition, natural 
language processing). However, despite impressive practical 
successes, a fundamental gap remains between biological 
reality and its computational models. The successes of ANNs 
are based on statistical patterns, not on the reproduction of the 
principles of biological brain operation. The gap between ANNs 
and biological neural networks (BNNs) manifests itself in three 
key aspects: a simplified view of neural signal transmission and 
processing; ignoring the spatio-temporal organization of neural 
ensembles; and the lack of genuine mechanisms of self-
organization and adaptation. In this paper, we formulate an 
alternative approach to modeling neural-like networks.  
We conduct a systematic analysis of the limitations of existing 
generations of ANNs, justify the necessity of considering 
biological principles, propose a new architecture based on self-
organizing networks of uniform elements (SNUE), and define 
promising research directions. 

2 ANALYSIS OF THREE GENERATIONS OF ANNS 

The idea of a mathematical description of a neuron as a 
computational unit was formulated back in 1943 by McCulloch 
and Pitts [McCulloch 1943]. The features of this model are that 
the output value is a binary variable. This simplest neural model 
can be described as 

  (1) 
where y Є {0,1} is the neuron output, f(·) is the activation 
function, Ni is the number of input neurons, xi is the input 
neuron i, wi is the synaptic weights between input neuron i and 
the output neuron, θ ∈ ℜ is the neuron activation threshold. 
This representation was used in the computational model of 
the first-generation ANN - the perceptron [2, 3]. The 
perceptron is the simplest type of neural network. It is based 
on a mathematical model of information perception by the 
brain, consisting of sensors, associative and responding 
elements. Three key characteristics of the perceptron can be 
highlighted: first - binary inputs and outputs, second - a 
threshold activation function, and third - a single-layer network 
architecture. At the same time, there are fundamental 
limitations: the inability to solve non-linearly separable 
problems, the lack of learning mechanisms, and excessive 
simplification of biological processes. Despite its simplicity, 
perceptrons solve classification problems very well. 
The further evolution of ANNs is associated with the 
emergence of deep neural networks, the development of error 
backpropagation algorithms, and the advancement of 
regularization methods. A feature of the second generation of 
artificial neural networks is the transition from a binary 
representation of input and output data to the use of real 
numbers. The activation function is a continuous function. An 
artificial neuron in this case can be described as 

                                                         (2) 
where b ∈ R is the bias vector. The computational model of an 
artificial neural network based on this representation of a 
neuron is a feedforward and feedback signal propagation 
neural network. The ability to differentiate continuous 
functions allows for efficient network training using the error 
backpropagation method. This form of representing an artificial 
neuron is used today in most neural network-based 
applications. Second-generation neural networks have come a 
long way from multilayer perceptrons to modern transformers. 
Key achievements of second-generation networks include the 
ability to approximate complex nonlinear functions, successes 
in computer vision and NLP, and the development of 
specialized hardware (GPU, TPU). 
Despite the huge successes in the application of second-
generation networks, significant drawbacks must be noted. 
These include high energy consumption associated with the 
need to store and process a huge number of weight 
coefficients. Problems of interpretability - the inability to 
determine why the network made a particular decision. 
Catastrophic forgetting, due to the fact that training an artificial 
neural network inevitably leads to the loss of information 
(previously acquired knowledge about the environment), which 
is distributed throughout the network. By changing the weight 
coefficients, which essentially store all the "knowledge" of the 
network, we do not add new "knowledge" but overwrite all 
accumulated ones. The artificial neuron has no information 
storage mechanisms. At the same time, it should be noted that 
short-term memory can be organized using specially built 
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configurations of artificial neural networks such as recurrent 
neural networks (RNN, Long short-term memory - LSTM). 
The attempt to more accurately mimic biological neurons, 
especially in terms of temporal characteristics, led to the 
creation of third-generation neural networks - spiking neural 
networks (SNNs) [4-7]. A neuron in an SNN can be described as 
a hybrid system formalism [4]: 

                                                        (3) 

where X is a vector consisting of the neuron's state variables, 
f(·) represents differential equations describing the evolution of 
state variables, and gi(·) represents the change in state 
variables caused by signal events at synapse i. A spiking neural 
network, based on a temporal coding scheme, initially contains 
a parameter such as time, so information memorization 
processes naturally enter the model. The connection between 
neurons in such a network is modeled through spikes - short 
pulses that are transmitted between neurons. Synaptic 
transmission in such networks is modeled through time delays 
and connection strengths that determine how quickly and 
strongly one neuron activates another. SNNs use models of 
synaptic plasticity [8 - 11], such as the STDP rule (Spike-Timing-
Dependent Plasticity), which is based on temporal correlation 
between spikes, and Hebb's rule [12]. This rule regulates the 
synaptic weight depending on the time between the spike in 
the presynaptic and postsynaptic neurons, similar to how the 
strength of the synaptic connection changes in a biological 
system based on experience and learning. A detailed 
description of approaches for training SNNs can be found in the 
review [13]. 
The main advantage of spiking neural networks is that they can 
be implemented in "hardware" in neuromorphic computers 
that have significantly higher computation speeds and orders of 
magnitude lower energy consumption [9,14]. Table 1 shows the 
main differences between 2nd and 3rd generation ANNs. 

Table 1. Comparative table of characteristics of ANNs and SNNs 

 

Parameter 

2nd 
generation 

ANN 

Spiking 
Networks 

Signal type Analog Impulse 

Temporary 
resolution 

No High 

Energy efficiency   Low Tall 

Biological 
adequacy 

Moderate Tall 

Promising directions for the use of SNNs, in particular, are the 
development and creation of neuromorphic processors, 
resistive memory devices, and hybrid digital-analog systems. 

3 COMPARISON WITH BIOLOGICAL SYSTEMS 

Despite the huge successes in the use of ANNs based on 
representation (1), it must be noted that the representation of 
a neuron in this form is simply a mathematical trick and has 
practically nothing in common with biological neurons. Three 
main structural components of a biological neuron can be 
distinguished: dendrites, which are responsible for spatial signal 
integration, nonlinear processing of inputs, and have local 
computational nodes; the soma (body) of the neuron performs 
the functions of integrating dendritic signals, generating action 
potentials, and metabolic regulation; axons are necessary for 

transmitting signals over long distances, providing modulation 
of synaptic transmission and temporal synchronization. 
In artificial neural networks, there are no analogues of 
dendrites and axons, and accordingly, there is no possibility of 
simply implementing the functions they perform in the process 
of receiving, processing, and transmitting excitation. The soma 
has a complex structure and performs the function of not only 
collecting information from dendrites (like a summator in an 
ANN) but also forming conditions for generating a response 
signal. Furthermore, there are other critical differences 
between biological and artificial neural networks. Biological 
neural networks are neural ensembles located in three-
dimensional space with a 3D structure. The structure of these 
ensembles, as well as their topology, determine various 
properties, including the specialization of neurons and the 
functions they perform. Neither SNNs nor ANNs reflect the 
spatial arrangement of neurons and their parts. At the same 
time, taking into account the spatial location of the neurons 
themselves, as well as their structural parts - dendrites and 
axons, is extremely important. For example, Fig. 1 shows how 
the potential changes depending on the location of synaptic 
inputs (stimuli 1 and 2) co-activated within the same dendrite. 
Inputs located on the same dendritic branch will integrate in a 
nonlinear sigmoidal manner [15], while the same inputs 
distributed across different branches will linearly summate in 
the soma. This prediction has been confirmed experimentally 
on the basal dendrites of neocortical neurons [16]. 

 
Figure 1. Schematic representation of a neuron with a dendrite. The 
numbers indicate co-activated input points. The lower graph shows 
membrane polarization depending on the input points of two signals. 

(from work [17]) 

Biological networks are characterized by dynamic 
reconfiguration of connections during signal transmission and 
learning, which is absent in ANN and SNN models. 
It should be noted that there are biophysical models of neurons 
that take into account the morphology of living cells in detail. 
These models are ideally suited for studying how dendritic 
information processing influences neural computations at the 
single-cell level [17]. Such models include hundreds of 
compartments (dendritic branches), each equipped with 
numerous ionic mechanisms to accurately reproduce the 
electrophysiological profile of the simulated neurons. However, 
achieving high model accuracy is usually accompanied by an 
increase in computational complexity, leading to higher 
CPU/GPU requirements and a significant increase in execution 
time [17]. Therefore, this category of models is not suitable for 
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modeling large networks where computational efficiency is a 
key priority. 
In general, while dendrites provide biological networks with 
significant computational power, and these advantages are 
likely to extend to machine learning systems, in real SNN 
models, dendrites are usually not used. The reason is that 
detailed modeling of dendritic properties consists of overly 
complex equations with numerous free parameters, making it 
mathematically difficult to solve, and the equation describing 
dendrite dynamics 

 

              (4) 

 

where, the parameter Cd characterizes capacitance; Em - 
dendrite energy; EL - dendrite closure energy; gL- parameter 
characterizing leakage current conductance; Ia

i- current from 
the i- th dendritic branch attached to the dendrite; Ij

syn - current 
from the j-th synapse; Cd- includes all branches connected to 
this branch; Sd - all synapses of this branch. Similar equations 
are used to describe the dynamics of axons, cells, and the 
entire neural network. As a result, a complex system of 
differential equations arises, describing signal propagation, 
represented as a set of currents using Kirchhoff's laws.                 
A number of other features inherent in biological neural 
networks can be highlighted. These are temporal 
characteristics: signal propagation delays, temporal integration 
windows, time-dependent plasticity. Synaptic dynamics: the 
chemical nature of signal transmission, modulation by 
neurotransmitters, long-term potentiation/depression. 

SELF-ORGANIZING NETWORKS OF UNIFORM ELEMENTS 

One of the possible directions for the further development of 
neural networks is the development of a fundamentally new 
class of computational systems that combine the advantages of 
biological information processing with the capabilities of 
modern digital technologies [18,19]. The main property of 
these systems should be the ability to self-organize during 
operation depending on the tasks performed. Below are the 
main principles of self-organizing networks of uniform 
elements. 
First of all, this is heterogeneity of elements. The basic objects 
of the network do not necessarily have to be represented by 
neurons. They can be of a completely different nature 
depending on the task. These could be, for example, social 
network users or a swarm of unmanned vehicles. At the same 
time, the objects and principles of network organization must 
satisfy a set of requirements to ensure the possibility of self-
organization and maintaining the network in working condition 
for a given time. Although we are generally talking about self-
organization of uniform elements, structurally each element 
can itself consist of a set of sub-objects interacting with each 
other and the external environment. It is clear that to describe 
the interaction processes of such a composite system, it is 
necessary to use hybrid processing models, depending on the 
type, nature, and character of the interaction, for example, 
chemical interaction with the external environment or spike 
transmission within the network. A multi-level and multi-object 
structure leads to the need for a hierarchical organization of 
the network according to the principle from simple to complex. 
Another main principle that the network must possess is the 
condition of dynamic self-organization: first of all, this is the 
requirement for emergent structure formation. Emergence is a 
phenomenon where new properties or behavior arise in a 
system that are not characteristic of its individual components. 

For example, in physics, as a result of quantum-mechanical 
interaction of particles, parameters characteristic of 
macroscopic systems appear, such as material resistance or 
boiling point. Another fundamental property of self-organizing 
systems is adaptation to input data. This property is necessary 
for the emergence of evolutionary mechanisms for optimizing 
the entire system. Evolutionary mechanisms are necessary to 
ensure the stability of the entire system and its properties 
regardless of changing external conditions. Moreover, these 
mechanisms should not be artificially introduced into the 
system in the form of rules, but should arise as a result of the 
emergent nature of system formation. 
The next property that SNUE should possess is spatial 
embeddedness. In fact, the concept of space is absent in 
artificial neural networks. Existing SNNs and ANNs do not 
reflect the spatial arrangement of neurons and their parts. It 
was shown above that taking into account the spatial location 
of the neurons themselves, as well as their structural parts - 
dendrites and axons, is extremely important in biological 
systems. Introducing the concept of space into SNUE will 
naturally take into account physical limitations, for example, 
signal propagation in the intercellular environment, and also 
separate local and global interactions acting at different levels 
of the model. This will lead to the emergence of the property of 
architectural scalability. 
Architecturally, the solution of the multi-level SNUE model can 
be represented in the form of three main parts: 

1. Microlevel. At this level, individual elements of the system 
are simulated. These can be, for example, neurons, social 
network users, atoms, robots with primitive functionality. At 
this level, their state and internal variables are determined, as 
well as the rules of local interactions and associated input-
output interfaces. Actually, this level is basic and directly tied to 
the type of network. 

2. Mesolevel (ensembles): At this level, functional clusters that 
arise during the network's life are defined. Activation patterns 
directly related to input data, their interaction, and changes in 
the connectivity dynamics of both individual elements and 
ensembles of elements. 

3. Macrolevel, at which the entire system is considered as a 
whole. Its global characteristics and emergent properties are 
determined, and adaptive behavior is formed. Table 2 shows 
the main characteristics of different generations of neural 
networks. 

Table 2. Comparison of characteristics of neural network architectures 

Parameter Perceptrons 

(1st Gen) 

Deep 

Networks (2nd 

Gen) 

Spiking 

Networks (3rd 

Gen) 

Biological 

Neural 

Networks 

SNUE (Proposed 

Model) 

Signal Type    Binary Real-valued              Impulse 

(temporal tags)     

Electroche

mical 

spikes      

Hybrid (analog + 

impulse) 

Time 

Processing     

None  Discrete steps           Continuous 

temporal coding 

Continuou

s 

dynamics         

Dynamic time 

windows   

Energy 

Consumptio

n 

Low High 

(GPU/TPU)           

Moderate 

(neuromorphic 

chips) 

Extremely 

low (~20 

W)       

Optimized 

(memristors) 

Plasticity Fixed 

weights 

Backpropagatio

n          

STDP Hebbian+ 

homeostat

ic       

Self-organizing 

topology 

Implementat

ion 

Examples 

Logical 

circuits 

ResNet, 

Transformer      

ResNet, 

Transformer      

Hebbian+ 

homeostat

ic       

Memristive 

ensembles   
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In general, spiking networks are closer to biological systems in 
terms of energy efficiency and temporal encoding, but are 
inferior in adaptability. The proposed SNUE architecture 
combines the advantages of impulse transmission with self-
organization mechanisms absent in classical ANNs. 

CONCLUSIONS 

The proposed SNUE concept represents a promising synthesis 
of neurobiological principles and modern computational 
paradigms. Unlike traditional approaches, it takes into account 
spatio-temporal dynamics, supports genuine self-organization, 
and provides biologically plausible plasticity. The 
implementation of this approach opens up prospects for 
creating a fundamentally new class of computational systems 
that combine the advantages of biological information 
processing with the capabilities of modern digital technologies. 
Certainly, the implementation of SNUE requires solving certain 
problems, first of all, it is necessary to answer existing 
theoretical challenges, namely, to formalize the principles of 
self-organization, develop, if necessary, new mathematical 
apparatus, create metrics for assessing bio-likeness. There are 
also technological barriers that need to be overcome. Solve 
scaling problems, develop energy-efficient implementations 
and interfaces of SNUE with traditional systems. 
Let us emphasize once again that the proposed computational 
complex does not necessarily have to rely on physical or 
chemical processes in a biological neural network. It is 
necessary to find and formulate general principles on which it is 
possible to organize network interaction of uniform elements 
regardless of their nature with the possibility of organizing a 
neural-like network. For the creation and ensuring the 
operability of the SNUE network, several stages can be 
distinguished. At the first stage, it is necessary to develop 
algorithms for forming a set of non-interacting uniform objects 
randomly distributed in 3D space. Each object must have a set 
of randomly distributed points of information reception in 3D 
space (a-la dendrites) and at least one point of information 
output to a random point in the space occupied by the network 
(axon). At the next stage, it will be necessary to establish 
connections between the elements of the created network. As 
already mentioned, the topology of artificial neural networks is 
usually set initially and does not change during the training and 
application of the trained network. It is desirable to formulate 
simple principles that allow the SNUE to self-organize 
depending on the type of input signals. A detailed discussion of 
the issues of self-organization of interacting objects will be 
carried out in the next article. 
SNUE systems can be used in various applied areas, such as 
Adaptive robotics, neuroprosthetics, cognitive architectures, 
and predictive systems. 
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