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ABSTRACT 
Additive manufacturing has revolutionized production 
capabilities across industries, yet quality assurance and process 
optimization remain significant challenges due to complex, 
multi-parameter interactions. Explainable Artificial Intelligence 
(XAI) offers potential solutions by providing interpretable 
insights into manufacturing processes, though its systematic 
application remains fragmented. Nevertheless, a comprehensive 
understanding of integration patterns, effectiveness metrics, 
and implementation barriers remains limited. Following PRISMA 
guidelines, this systematic review searched Scopus, Web of 
Science, IEEE Xplore, and ScienceDirect databases for studies 
published from inception to 2025. From 211 initial records, 38 
peer-reviewed studies met inclusion criteria after screening and 
quality assessment. Results reveal that while XAI achieves high 
predictive performance, critical interpretability standardization 
gaps hinder industrial deployment. SHAP dominates applications 
(58% adoption), with quality control representing 39% of 
studies. Regression tasks achieve R² > 0.90 in 76% of cases, and 
classification tasks report >95% accuracy in 71% of cases. 
However, only 21% of studies provide quantitative 
interpretability assessment. These findings establish a 
foundation for developing standardized XAI evaluation 
frameworks in manufacturing contexts. Ensemble methods and 
physics-informed approaches offer the most promising 
pathways for achieving both high performance and mechanistic 
interpretability in safety-critical manufacturing environments. 
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1 INTRODUCTION 

Explainable Artificial Intelligence (XAI) has become a critical 
enabler for trustworthy AI deployment across high-stakes 
domains, providing transparency and interpretability to complex 
machine learning systems. In manufacturing contexts, where 
safety, quality, and regulatory compliance are essential, 
understanding and validating AI decision-making processes has 
become necessary for practical implementation [Ma 2024; 
Truong 2025]. Additive Manufacturing (AM), one of the most 
data-intensive and process-sensitive manufacturing paradigms, 
generates vast quantities of sensor data that can benefit from 
AI-driven analysis, yet requires interpretable insights for 
operational acceptance and regulatory approval [Ukwaththa 
2024]. 

Recent comprehensive reviews have identified three critical 
systematic gaps in XAI-AM integration that fundamentally 
constrain industrial adoption: (1) the absence of standardized 
interpretability assessment frameworks across diverse AM 
applications, (2) insufficient integration between real-time 
manufacturing constraints and XAI computational overhead, and 
(3) limited human-centered evaluation methodologies for 
manufacturing practitioners [Ukwaththa 2024] methods in 
additive manufacturing. These gaps explicitly represent the 
primary barriers preventing the transition from technically 
feasible XAI implementations to widespread industrial 
deployment, despite demonstrated accuracy improvements 
exceeding 95% in controlled environments. 

The convergence of XAI and AM has gained unprecedented 
momentum since 2023, driven by what recent literature 
characterizes as the explainability revolution in smart 
manufacturing systems [Abhilash 2024]. This paradigm shift 
represents a fundamental transition from Industry 4.0's focus on 
automation toward Industry 5.0's emphasis on human-AI 
collaboration and trustworthy manufacturing systems. The year 
2024 marked a critical inflection point, with Kharate et al. 
demonstrating successful integration of SHapley Additive 
exPlanations (SHAP), Local Interpretable Model-agnostic 
Explanations (LIME), and Partial Dependence Plot (PDP) 
techniques in FDM-based biocomposite manufacturing, 
achieving R² values exceeding 0.95 for mechanical property 
prediction [Kharate 2024], while systematic reviews of XAI in 
process engineering revealed that current applications remain 
predominantly exploratory due to restricted access to large, 
reliable datasets [Di Bonito 2024]. 

Recent advances in model-agnostic explanation methods have 
transcended the traditional SHAP-LIME paradigm, with 
comparative analyses revealing critical limitations related to 
model-dependency and feature collinearity that affect 
interpretation reliability [Salih 2025]. The emergence of physics-
informed XAI approaches [Arinez 2020] and ontology-based 
explainable AI frameworks [Dolgui 2024] represents a paradigm 
shift toward mechanistically grounded interpretability that 
addresses the causality limitations observed in 39% of current 
implementations. 

Despite growing academic interest, recent surveys indicate that 
XAI integration in manufacturing cyber-physical systems remains 
predominantly in proof-of-concept stages, with limited 
industrial deployment due to computational overhead 
constraints and unclear ROI justification [Moosavi 2024]. The 
most significant barrier lies in the absence of comprehensive 
evidence synthesis that could bridge the gap between 
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theoretical XAI capabilities and practical manufacturing 
requirements. Recent semiconductor manufacturing case 
studies demonstrate that XAI-enhanced quality control can 
achieve substantial process improvements [Senoner 2022], yet 
systematic understanding of scalability, generalizability, and 
cross-domain applicability remains fragmented.  

This systematic review addresses these critical gaps by providing 
the first comprehensive analysis of XAI integration in additive 
manufacturing, examining 38 peer-reviewed studies published 
between 2021 and 2025. Our analysis reveals that 92.1% of 
publications occurred during 2023-2025, indicating rapid field 
maturation, while simultaneously exposing systematic 
methodological deficiencies where only 21% of studies provide 
quantitative interpretability assessment. The convergence 
toward SHAP-based approaches (58% adoption rate) reflects 
practical consensus, yet masks underlying diversity in application 
contexts and evaluation methodologies that compromise cross-
study comparability. 

Our primary objectives are to systematically map the current 
landscape of XAI methods applied to AM applications, evaluate 
the effectiveness of different XAI approaches across diverse 
manufacturing contexts, identify methodological patterns and 
performance benchmarks, and determine critical research gaps 
and future research priorities that address the identified 
systematic barriers to industrial XAI deployment. 

2 METHODOLOGY 

2.1 Search Strategy 

This systematic review traced XAI development in AM from the 
early stages through 2025, capturing the critical transition from 
proof-of-concepts to practical implementation. We conducted 
comprehensive searches across four major academic databases: 
Scopus, Web of Science, IEEE Xplore, and ScienceDirect. The 
standardized search string applied across all databases was: 
("explainable AI" or "interpretable AI" or “XAI" or "explainable 
artificial intelligence" or "transparent AI") and ("additive 
manufacturing" or "3D printing" or "rapid prototyping" or 
"digital fabrication"). Initial retrieval yielded 211 records: Scopus 
(99), Web of Science (58), IEEE Xplore (28), ScienceDirect (26). 

2.2 Selection Criteria and Screening 

The inclusion criteria required studies to: (i) be peer-reviewed 
and published in English, (ii) present a clear implementation of 
explainable artificial intelligence (XAI) techniques applied 
specifically to additive manufacturing (AM), and (iii) include 
quantitative results derived from empirical experimentation or 
simulation, with sufficient methodological detail to support 
comparative analysis. 

The exclusion criteria were defined as follows: (i) non-peer-
reviewed or grey literature (e.g., preprints, theses, whitepapers); 
(ii) studies addressing general artificial intelligence in AM 
without any XAI component; (iii) papers lacking empirical 
validation (e.g., conceptual frameworks or position papers); and 
(iv) duplicate entries across databases. 

A two-stage screening process was employed. In the first stage, 
two independent reviewers screened titles and abstracts based 
on the defined criteria. In the second stage, full-text reviews 
were conducted for shortlisted articles. Inter-rater reliability was 
assessed using Cohen’s κ, achieving a value of 0.87, indicating 
substantial agreement. Discrepancies were resolved through 
consensus discussion. The final corpus comprised 38 studies that 
met all eligibility conditions. 

.2.3 Data Extraction and Quality Assessment 

We conducted quality assessment through a differentiated 
evaluation approach that recognized the distinct characteristics 
and contributions of journal articles and conference papers to 
the field. Journal articles were evaluated using six criteria, each 
scored from 0-5 points for a total of 30 points: research 
methodology, theoretical foundation, data analysis and 
validation, result interpretation, impact and implications, and 
overall quality of presentation. Conference papers were 
evaluated using five criteria totaling 30 points: technological 
novelty (0-7 points), implementation rigor (0-7 points), 
experimental validation (0-6 points), clarity of results 
presentation (0-5 points), and prospects for future research (0-5 
points).  

To reduce potential subjective bias and enhance reliability, 
multiple safeguards were employed. Each paper was 
independently assessed by two reviewers following a 
standardized evaluation framework. Inter-rater reliability was 
quantified using Cohen’s Kappa coefficient, yielding a value of 
0.82. Any discrepancies were addressed through structured 
discussions aimed at reaching consensus. Building upon the 
defined evaluation criteria, the adapted framework accounted 
for the specific characteristics of conference publications. While 
such works often present more concise methodological sections, 
they frequently deliver substantial technological innovations 
and detailed implementation insights, elements of particular 
relevance to the advancement of XAI applications in AM. To 
ensure consistency, the maximum attainable score was 
standardized at 30 points across both conference and journal 
publications, reflecting their respective strengths. Based on the 
total score, publications were classified into three quality tiers: 
superior (24-30 points), moderate (16-23 points), and inferior 
(below 16 points), irrespective of format. Nonetheless, certain 
methodological limitations were acknowledged. The expertise 
and professional background of reviewers could  influence the 
weighting of specific quality dimensions, and the rapid evolution 
of XAI technologies may, over time, reshape perceptions of 
quality. 

3 RESULTS 

3.1 Study Selection Process 

 

 



 

 

MM SCIENCE JOURNAL I 2025 I OCTOBER 

8640 

 

Figure 1. PRISMA flow diagram of study selection process 

A total of 211 records were retrieved from four electronic 
databases during our initial search: Scopus (n=99), Web of 
Science (n=58), IEEE Xplore (n=28), and ScienceDirect (n=26). 
This systematic search and screening methodology was 
thoroughly documented following PRISMA guidelines (Fig. 1). 

The screening process proceeded through several stages 
following systematic review protocols to ensure comprehensive 
and transparent study selection: 

 Identification: Initial database searches across 
multiple platforms yielded records that underwent 
preliminary filtering. After removing 73 duplicates and 
clearly unrelated records through automated 
deduplication tools and manual verification, 138 
unique records remained for detailed screening 
assessment. 

 Screening & Eligibility: From the remaining 138 
records, systematic title and abstract review was 
conducted by independent reviewers applying 
predetermined inclusion and exclusion criteria. This 
process resulted in the exclusion of 82 records based 
on established criteria such as lack of empirical XAI 
implementation, absence of additive manufacturing 
application focus, and insufficient methodological 
detail for systematic analysis. Inter-reviewer 
disagreements were resolved through discussion and 
consensus. 

 Full-text assessment: Of the 56 articles identified for 
full-text retrieval and detailed evaluation, three were 
inaccessible despite direct author contact attempts 
and institutional library searches, leaving 53 articles 
for comprehensive assessment. 

 Final inclusion: After evaluating 53 full-text articles 
against the complete inclusion criteria, 15 were 
excluded due to insufficient XAI validation 
methodology, lack of quantitative results suitable for 
systematic synthesis, or peripheral relevance to the 
specific research questions. This rigorous selection 
process resulted in 38 studies meeting all inclusion 
criteria and providing adequate detail for 
comprehensive systematic analysis. 

3.2 Overview  

A total of 38 peer-reviewed studies published between 2021 and 
2025 were included in the review. Among them, 87% were 
journal articles and 13% were conference proceedings. The 
dominant AI application type was regression (68%), followed by 
classification (24%) and other tasks such as inverse design or 
anomaly detection (8%). Publication frequency peaked in 2023 
and 2024, each accounting for 39% of the total studies, while 
2025 contributed 18%, indicating increased interest in XAI within 
AM in recent years. Publication trends show accelerating 
growth, with 2023 and 2024 marking peak year (39% of total 
publications each year), followed by continued momentum in 
2025 (18%). This pattern reflects the maturation of both XAI 
methodologies and their practical implementation in 
manufacturing contexts, with 2023-2025 accounting for 92% of 
all publications in this domain. 

3.3 Evolution and Distribution of XAI Techniques 

Among the 38 reviewed studies, SHAP emerged as the most 
frequently applied explainability method, reported in 22 studies 
(58%). LIME and PDP followed, each appearing in six studies 
(16%). Visual interpretability techniques, including Layer-wise 
Relevance Propagation (LRP) and Grad-CAM, were used in a 

smaller number of studies (3 and 2, respectively). A subset of 
works employed domain-specific and physics-informed 
approaches, such as Mahalanobis distance metrics, governing 
equation integration, and handcrafted feature attribution 
schemes. Tab. 1 summarizes the frequency and representative 
examples of each XAI method identified in the corpus. 

Table 1. Summary of XAI Techniques Used in Reviewed Studies 

XAI Technique No. of 
Studies  

Representative Studies 

SHAP 22 [Uddin 2023; Akbari 2024; 
[Ackermann 2023; Ghasemi 
2023; Maitra 2024] 

LIME 6 [Bordekar 2025; Ryan 2024; 
Xie 2025] 

PDP 6 [Kharate 2024; Mishra 
2023; Ryan 2024] 

LRP 3 [Kiran 2025; Weeks 2025]  

Grad-CAM 2 [Yoo 2024] 

Mahalanobis 
Distance 

3 [Kumar 2025; Kumar 2024a; 
Kumar 2024b] 

Physics-Informed 
Explanations 

4 [Du 2021; Zhu 2024] 

Feature 
Importance (ML-
based) 

4 [Gawade 2025; Akbari 
2024] 

 

Figure 2 Evolution of XAI Methods Over Time 

The temporal adoption of XAI methods from 2021 to 2025 is 
illustrated in Fig. 2, highlighting the growing dominance of SHAP 
and the gradual emergence of hybrid and domain-specific 
techniques. 

3.4 Application-Specific XAI Implementation 

3.4.1 Quality Control and Defect Detection 

Quality control represents the largest application area with 15 
studies (39%), reflecting the critical importance of defect 
prevention and process validation in manufacturing 
environments. The XAI implementations in this domain utilize 
diverse methodological approaches including Zero-bias Deep 
Neural Networks combined with Mahalanobis distance metrics, 
SHAP analysis for feature attribution, and visual interpretability 
techniques such as Grad-CAM and Layer-wise Relevance 
Propagation (LRP) for spatial explanations. 
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These methods demonstrate exceptional technical performance 
across multiple manufacturing contexts. Zero-bias Deep Neural 
Networks achieve remarkable accuracy (>99%) in detecting 
unknown defects without requiring defect-specific training data 
[Kumar 2024b], while SHAP analysis consistently identifies key 
process parameters in eight quality control studies, enabling 
systematic understanding of defect causation factors. 
Furthermore, Grad-CAM and LRP visualizations provide spatial 
explanations for image-based defect detection systems [Yoo 
2024], allowing operators to understand both the location and 
characteristics of detected anomalies. Additional quality control 
implementations include CT scan analysis with SVM achieving 
AUC = 0.94 and F1-score = 94.4% explainable CT-based defect 
detection [Bordekar 2025], textile defect detection addressing 
LIME limitations, privacy-preserving anomaly detection 
achieving 94.43% accuracy [Piran 2025], cross-modal defect 
detection with 98.6% accuracy [Xie 2025], WAAM anomaly 
detection with LightGBM achieving F1 = 0.945 [Vozza 2024], 
injection molding quality control [Muaz 2025] and physics-
informed defect prediction with 90% accuracy [Du 2021]. 

The applications span multiple additive manufacturing 
technologies and focus primarily on real-time anomaly detection 
and defect characterization processes. These implementations 
support automated inspection workflows, enable predictive 
quality management strategies, and provide interpretable 
feedback for process adjustment decisions. However, the 
computational overhead and real-time processing requirements 
present ongoing challenges for deployment in high-throughput 
manufacturing environments. 

3.4.2 Process Parameter Optimization 

Process parameter optimization comprises 11 studies (29%) that 
leverage XAI methodologies to reveal complex, nonlinear 
relationships between process variables and material properties 
in additive manufacturing systems. The primary XAI approaches 
include SHAP feature importance analysis, Partial Dependence 
Plots (PDP) for individual parameter visualization, and 
interaction analysis techniques for identifying synergistic effects 
between multiple process variables.  

SHAP feature importance analysis appears in eight optimization 
studies, consistently identifying critical parameters such as layer 
height, infill density, and thermal conditions across different AM 
technologies [Kharate 2024; Uddin 2023]. Additionally, Partial 
Dependence Plots enable visualization of individual parameter 
effects in three studies, while advanced interaction analysis 
reveals synergistic effects between multiple variables that 
cannot be captured through individual parameter assessment 
alone [Wang 2024]. These methodological combinations provide 
a comprehensive understanding of parameter-property 
relationships that guide systematic optimization strategies.  

The applications focus on mechanical property prediction, 
surface quality optimization, and process efficiency 
improvement across diverse additive manufacturing processes 
and material systems. The studies demonstrate how XAI-guided 
parameter optimization can replace traditional trial-and-error 
approaches with systematic, knowledge-based optimization 
strategies. Nevertheless, the complexity of parameter 
interactions and the need for extensive validation across 
different manufacturing contexts remain significant 
implementation challenges. 

3.4.3 Design Optimization and Inverse Design 

Design optimization applications represent seven studies (18%) 
that utilize XAI techniques to guide topology optimization, lattice 
structure design, and material discovery processes in additive 

manufacturing contexts. The methodological approaches 
include SHAP-based analysis for design principle extraction, 
physics-informed XAI methods for mechanistic understanding, 
and interpretable surrogate modeling techniques for complex 
design space exploration. 

SHAP-based analysis appears in three design studies, revealing 
fundamental design principles for composite structures and 
lattice optimization [Chiu 2023; Thawon 2025], while physics-
informed approaches enable interpretable surrogate modeling 
for complex design spaces where traditional computational 
methods become prohibitively expensive. These 
implementations combine data-driven pattern recognition with 
mechanistic understanding to create design tools that respect 
physical constraints while optimizing multiple performance 
objectives simultaneously. 

The applications encompass topology optimization for structural 
components, lattice structure design for lightweight 
applications, and automated material discovery for specific 
property targets. The studies demonstrate XAI's potential to 
transform design from empirical iteration toward knowledge-
based synthesis, enabling extraction of generalizable design 
rules and principles. However, the relatively smaller number of 
design optimization applications compared to other domains 
indicates field immaturity and suggests significant potential for 
future development as methodologies become more 
sophisticated. 

3.4.4 Thermal Modeling and Process Monitoring 

Thermal modeling and process monitoring applications comprise 
4 studies (11%) that employ sophisticated hybrid architectures 
combining Physics-Informed Neural Networks (PINNs) with XAI 
methods to address the critical importance of thermal 
management in additive manufacturing processes. The primary 
methodological approaches include SHAP analysis of temporal 
neural networks, Layer-wise Relevance Propagation for spatial 
feature importance, and physics-informed interpretability 
techniques that ground explanations in fundamental thermal 
dynamics principles.  

These hybrid implementations achieve remarkable predictive 
accuracy with R² values exceeding 0.97 while maintaining real-
time processing capabilities essential for manufacturing 
deployment. SHAP analysis of LSTM networks reveals temporal 
dependencies in thermal gradient evolution [Kiran 2025], 
enabling understanding of how thermal history influences 
current and future thermal states. Bayesian learning-enabled 
XAI demonstrates improved prediction accuracy with MAE 
reduced from 5.31% to 3.43% [Zhu 2024], while emission 
prediction models achieve high accuracy with RMSE around 0.66 
mV [Bock 2024; Guo 2023]. Concurrently, LRP provides insights 
into spatial feature importance in thermal field prediction, 
identifying which spatial regions most strongly influence thermal 
predictions and enabling both predictive control and diagnostic 
analysis. 

The applications focus on temperature prediction, thermal 
gradient monitoring, and real-time process control across 
multiple additive manufacturing technologies including polymer 
extrusion and metal powder bed fusion processes. These 
implementations enable predictive thermal management 
strategies that prevent thermal-related defects and optimize 
process parameters for improved quality outcomes. However, 
the computational complexity of hybrid architectures and the 
need for real-time processing create technical challenges that 
limit widespread deployment in industrial manufacturing 
environments. 
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Figure 3. XAI Method vs. Application Area 

Fig. 3 shows the frequency distribution of XAI methods across 
different application domains; SHAP clearly dominates in Quality 
Control and Parameter Optimization, whereas methods like 
LIME, Feature Importance, and Mahalanobis are also prevalent 
in Quality Control, and PDP is frequently used for Parameter and 
Design Optimization. 

3.5 AI Model Architectures and XAI Integration 

The distribution of AI model architectures across the 38 
reviewed studies reveals distinct patterns that reflect the 
balance between predictive performance requirements, 
interpretability needs, and computational constraints in 
manufacturing applications. Ensemble methods dominate with 
16 studies (42%), followed by deep learning approaches in 14 
studies (37%), while physics-informed models and Bayesian 
approaches each appear in 4 studies (11%). This distribution 
indicates strategic preference for interpretable-by-design 
approaches that provide inherent explainability while 
maintaining competitive predictive accuracy. 

Ensemble methods, including Random Forest, XGBoost, and 
LightGBM implementations, offer inherent interpretability 
through feature importance metrics while maintaining high 
predictive accuracy [Akbari 2024; Mishra 2023]. These 
approaches provide transparent decision-making processes that 
manufacturing engineers can interpret without specialized XAI 
training, thereby addressing critical adoption barriers in 
industrial environments. Moreover, the computational 
efficiency and robustness of ensemble methods make them 
particularly suitable for manufacturing deployment where 
reliability and interpretability are paramount considerations. 

Deep learning approaches require sophisticated XAI integration 
but demonstrate superior performance in complex pattern 
recognition tasks including defect morphology classification, 
process signature analysis, and multi-modal sensor data fusion. 
SHAP provides model-agnostic explanations in six deep learning 
studies, enabling standardized interpretability frameworks 
across different neural network architectures, while attention 
mechanisms offer architecture-specific interpretability that 
reveals which temporal or spatial features drive manufacturing 
predictions. However, the computational overhead and 
complexity of deep learning XAI integration present challenges 
for real-time manufacturing deployment. 

Physics-informed models represent an emerging paradigm that 
combines mechanistic understanding with data-driven learning 
capabilities [Du 2021; Zhu 2024]. These approaches achieve 
interpretability through physical constraint satisfaction and 
governing equation residuals, providing explanations grounded 

in fundamental manufacturing physics rather than purely 
statistical associations. Similarly, Bayesian approaches offer 
uncertainty quantification alongside interpretability, particularly 
valuable in data-scarce scenarios common in AM research 
[Drakoulas 2024], where confidence bounds on predictions 
become essential for risk management in manufacturing 
decision-making. 

 

Figure 4. XAI Methods Integration by AI Model Architecture 

Figure 4 illustrates the distribution of XAI methods across 
different AI model architectures, revealing that SHAP 
demonstrates universal applicability across ensemble and deep 
learning models due to its robust model-agnostic capabilities. 
Conversely, physics-informed and Bayesian models tend to rely 
on custom or domain-specific interpretability tools tailored to 
their mathematical frameworks, indicating areas where cross-
compatibility and standardized XAI integration require further 
methodological development to achieve comprehensive 
coverage across all architectural approaches. 

3.6. Performance Metrics and Interpretability Assessment 

Performance analysis across the 38 reviewed studies reveals 
consistently high predictive accuracy that demonstrates 
technical readiness for industrial deployment, while 
simultaneously highlighting a critical gap in interpretability 
evaluation methodology that constrains systematic validation of 
explainability claims. Regression tasks achieve R² values 
exceeding 0.90 in 29 out of 38 studies (76%), with notable 
examples including R² = 0.998 for lattice structure prediction  
[Thawon 2025], R² = 0.976 for thermal modeling [Kiran 2025], 
and R² = 0.958 for mechanical property prediction [Akbari 2024]. 
These performance levels demonstrate that XAI integration 
maintains or enhances predictive accuracy, contradicting 
traditional assumptions about interpretability-performance 
trade-offs. 

Classification tasks report equally impressive results with 
accuracy above 95% in 27 studies (71%), including exceptional 
performance examples such as 99.75% for fault detection 
[Chowdhury 2023], 99.72% for defect detection [Kumar 2024b] 
and 99.61% for thermal state classification [Yoo 2024]. These 
accuracy levels significantly exceed typical manufacturing AI 
requirements and suggest robust algorithm performance across 
diverse application contexts, manufacturing environments, and 
material systems. The consistency of high performance across 
different XAI methods and applications indicates that 
explainability enhancement does not compromise predictive 
capabilities. 

However, a fundamental methodological deficiency emerges in 
interpretability assessment, where only eight studies (21%) 
provide quantitative XAI evaluation metrics. This critical gap 
prevents systematic comparison of explanation quality, 
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validation of explanation accuracy, and evidence-based 
improvement of interpretability methods. The absence of 
standardized interpretability evaluation creates a situation 
where explainability claims cannot be objectively validated or 
systematically compared across different studies and 
applications. 

Recent developments suggest growing recognition of this 
evaluation gap, as novel interpretability metrics emerge in 
contemporary studies. These include relevancy, stability, and 
discernability measures for SHAP explanations [Gawade 2025], 
which represent promising advances toward rigorous XAI 
evaluation frameworks. However, the limited adoption of these 
metrics indicates that the field requires standardized 
interpretability assessment protocols to enable systematic 
validation and improvement of explanation methods. 

Fig. 5 provides a comparative analysis of three prominent XAI 
techniques across five key performance dimensions: 
interpretability level, computational overhead, accuracy impact, 
user comprehension, and generalizability. The scores on each 
dimension are assigned by the authors based on a qualitative 
synthesis of the evidence presented in the reviewed literature. 
The radar chart comparison reveals that SHAP excels in 
interpretability and generalizability while imposing moderate 
computational costs, LIME demonstrates strong performance in 
overhead efficiency and user comprehension with slightly lower 
interpretability, and physics-informed methods offer maximal 
interpretability grounded in domain knowledge though with 
higher specificity and lower accuracy impact. This multi-
dimensional analysis indicates that optimal XAI method selection 
depends on specific application requirements rather than 
universal method superiority, suggesting the need for 
application-specific evaluation criteria that balance multiple 
performance considerations. 

 

 

Figure 5. Radar chart comparing SHAP, LIME, and Physics-
Informed XAI methods on five performance and interpretability 
dimensions 

4 DISCUSSION 

4.1 Key Findings and Evidence Quality 

This systematic analysis of 38 peer-reviewed studies represents 
the first comprehensive evidence synthesis of XAI integration in 
additive manufacturing, revealing substantial growth and 
methodological convergence in this interdisciplinary domain. 
Our findings demonstrate that SHAP-based explanations have 
achieved dominance (58% adoption) not merely due to technical 
superiority, but through proven model-agnostic capabilities that 

address the diverse algorithmic landscape in AM applications, 
from ensemble methods (42% of studies) to deep learning 
architectures (37%). 

The concentration of publications in 2023-2025 (92.1% of total 
output) reflects the maturation of both XAI methodologies and 
their practical implementation in manufacturing contexts, 
contrasting sharply with earlier isolated attempts at AI 
interpretability in manufacturing. This temporal clustering 
suggests a critical mass threshold where XAI techniques became 
sufficiently robust for industrial applications, supported by our 
observed high predictive performance (R² > 0.90 in 76% of 
regression tasks). 

The predominance of quality control applications (39% of 
studies) aligns with manufacturing industry priorities for risk 
mitigation and regulatory compliance, while the substantial 
representation of process optimization (29%) indicates growing 
confidence in XAI-guided parameter tuning. However, the 
limited adoption in design optimization (18%) suggests barriers 
to integrating interpretability with complex design space 
exploration. 

4.2 Interpretability Assessment Gap and Methodological 
Implications 

A striking limitation of the current XAI-AM landscape is the 
paucity of quantitative interpretability assessment. Our finding 
that only 21% of reviewed studies conduct any formal evaluation 
of explanation quality reveals a methodological blind spot, 
where explanations are often presumed valid without empirical 
grounding. This gap suggests that the field, while rapidly 
adopting XAI techniques, has not yet established a 
commensurate culture of rigorous validation. It is likely 
attributable to a lack of standardized evaluation benchmarks 
and the inherent complexity of designing experiments that 
measure abstract qualities such as explanation fidelity or human 
utility. 
The implication of this oversight is profound: it poses a direct 
challenge to the scientific legitimacy of XAI applications in 
manufacturing. In the absence of rigorous empirical validation, 
the epistemic reliability of generated explanations remains 
indeterminate. This indeterminacy introduces substantial 
deployment risks in safety-critical industrial contexts, where 
erroneous interpretative outputs may precipitate economically 
detrimental or operationally hazardous decision-making. This 
assessment gap has a direct and tangible consequence: it fosters 
an environment where method selection may be driven by 
popularity rather than contextual suitability. 
Our radar chart comparison (Fig. 5) provides clear evidence for 
this challenge, revealing that different XAI methods possess 
distinct, complementary strengths, SHAP excels in 
interpretability and generalizability, LIME in computational 
efficiency, and physics-informed approaches in domain 
grounding. This finding directly challenges the current SHAP 
dominance, indicating that the one-size-fits-all application of a 
single popular method is suboptimal. Therefore, a more 
strategic, application-specific deployment of XAI is required, 
where the choice of method is tailored to the specific goals of 
the manufacturing task, whether it is real-time process control, 
post-hoc failure analysis, or materials discovery. 

4.3 Technical Performance Validation and Deployment 
Readiness 

A key finding from our synthesis is that the integration of XAI in 
Additive Manufacturing does not necessitate a performance 
trade-off. On the contrary, model utility is often enhanced, with 
76% of regression tasks reporting R² values exceeding 0.90 and 
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classification tasks frequently surpassing 95% accuracy. While 
these figures strongly support the technical readiness of XAI, 
they primarily reflect performance under controlled, post hoc 
evaluation settings. A critical gap remains between this 
laboratory validated performance and industrial grade 
robustness, as there is limited reporting on generalization to 
unseen operational conditions, multi machine environments, or 
process drift. This laboratory to factory gap is a primary 
challenge for deployment on a scale. 

In response to this challenge, our analysis reveals a strategic 
trend toward architectural interpretability over post hoc 
explanation. The prevalence of inherently interpretable 
ensemble methods (42% of studies) suggests a growing 
recognition that transparency should be integrated by design 
rather than retrofitted. This movement is further reinforced by 
the rise of physics informed approaches (11% of studies). By 
grounding explanations in fundamental manufacturing 
principles, these hybrid models not only enhance accuracy but 
also directly address the causality limitations observed in 39% of 
all reviewed studies. Together, these trends indicate a strategic 
pivot toward more scientifically grounded and intrinsically 
trustworthy XAI implementations as the most promising path to 
bridge the laboratory to factory gap. 

4.4 Methodological Limitations and Evidence Quality 
Constraints 

Several methodological limitations constrain the generalizability 
of our findings. The heavy concentration of publications in 
recent years (2023-2025) may reflect publication bias toward 
positive results as XAI gained prominence, potentially 
overestimating technique effectiveness. The predominance of 
journal articles (87%) over conference proceedings may bias 
toward more mature, validated approaches while 
underrepresenting emerging methodologies. 

The interdisciplinary nature of XAI-AM research creates 
evaluation challenges where traditional systematic review 
quality assessment tools prove inadequate. The absence of 
standardized benchmarks across studies limits cross-study 
comparison and meta-analytic synthesis. Additionally, the rapid 
pace of methodological development means some included 
studies may represent outdated approaches by current 
standards. 

The limited geographic and institutional diversity in the reviewed 
literature, with concentration in specific research centers, may 
reflect accessibility bias and limit the generalizability of findings 
across different manufacturing contexts and organizational 
cultures. The underrepresentation of negative results and failed 
XAI implementations likely overestimates success rates and 
underestimates deployment challenges. 

4.5 Implications for Manufacturing Practice and Policy 

This comprehensive evidence synthesis demonstrates that XAI 
integration in additive manufacturing has moved beyond proof-
of-concept to practical implementation readiness, with 
significant implications for industry adoption and regulatory 
frameworks. The demonstrated high performance across diverse 
applications provides confidence for industrial deployment, 
while the identified methodological gaps highlight areas 
requiring standardization before widespread adoption. 

Manufacturing organizations should prioritize SHAP-based 
approaches for broad applicability while considering specialized 
methods for specific applications, develop internal capabilities 
for interpretability assessment, and establish frameworks for 
human-AI collaboration that leverage XAI transparency. The 

evidence supports strategic investment in XAI infrastructure as a 
competitive advantage in increasingly automated manufacturing 
environments. 

Regulatory bodies should consider the maturity of XAI 
techniques in developing compliance frameworks for AI-assisted 
manufacturing, while recognizing the current limitations in 
interpretability assessment. The convergence toward 
standardized evaluation metrics represents an opportunity for 
proactive policy development that could accelerate safe, 
transparent AI deployment in manufacturing contexts. 

The transition toward XAI-enabled AM systems that are 
simultaneously autonomous and transparent addresses 
fundamental tensions between efficiency and oversight in AI-
driven manufacturing. This systematic evidence synthesis 
provides the foundation for evidence-based decision-making in 
XAI adoption, supporting the evolution toward Industry 5.0 
paradigms of trustworthy human-AI collaboration in advanced 
manufacturing systems. 

4.6 Future Research  

The systematic gaps identified throughout this review point 
toward several critical research priorities that are essential to 
advance the field. A foundational requirement for the scientific 
legitimacy of XAI in manufacturing is the establishment of 
standardized interpretability evaluation frameworks. Future 
research must transcend model-centric metrics to prioritize 
multi-dimensional protocols that encompass human-centered 
usability, domain-relevance, and context-specific fidelity. To 
address the mechanistic understanding limitations affecting 39% 
of current research, the expansion of Causal XAI frameworks is 
equally pressing. The exploration of hybrid models that bridge 
data driven predictions with physically grounded insights is 
essential to transition from proof-of-concept prototypes to 
trustworthy, auditable AI systems. 

Emerging trends observed in the literature indicate promising 
avenues for future work. Multi-modal interpretability 
approaches, identified in four studies, present a significant 
opportunity to develop unified explanation frameworks capable 
of transforming complex manufacturing decision-making. 
Concurrently, the nascent appearance of privacy-preserving XAI 
(one study) and human-centered design (two studies) signals a 
growing recognition of deployment constraints that extend 
beyond mere technical performance. Furthermore, real-time 
adaptive systems that combine XAI with active learning, noted in 
three studies, point toward a new paradigm of intelligent 
manufacturing that could revolutionize human-AI collaboration 
in the industry 5.0 era. 

To ensure long-term impact, research should also prioritize 
longitudinal studies to assess the deployment effectiveness of 
XAI in real world settings, alongside comparative analyses across 
diverse manufacturing domains. The integration of XAI with 
emerging technologies such as digital twins and edge computing 
offers a strategic path to create more holistic and responsive 
systems. Finally, the development of domain-specific XAI 
methods tailored to the unique physics and materials science of 
AM represents a particularly fruitful direction for advancing both 
fundamental scientific understanding and practical, high-value 
applications. 

5 CONCLUSIONS 

This systematic review of 38 studies reveals growing adoption of 
XAI in additive manufacturing, with SHAP-based approaches 
showing preference across diverse applications. However, 
critical gaps in interpretability assessment methodology 
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(present in only eight studies, 21%) indicate the field requires 
standardized evaluation frameworks before claims of technical 
maturity can be supported. The field's rapid crystallization 
during 2023-2025 (92.1% of publications) and preference for 
ensemble methods (42%) signals implicit recognition that 
transparency should be architectural rather than retrofitted; 
while emerging causal frameworks (3 studies) and multi-modal 
approaches (4 studies) point toward the next evolutionary 
phase, inherently interpretable manufacturing systems that 
align with physical principles rather than requiring post-hoc 
explanation. The evidence demonstrates technical readiness for 
industrial deployment while highlighting an urgent need for 
standardized interpretability evaluation frameworks; success in 
advancing trustworthy manufacturing AI depends not on 
refining explanation methods, but on fundamentally rethinking 
system architecture to achieve transparency by design rather 
than explanation by afterthought. 
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