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Abstract 
Additive manufacturing (AM) quality control relies on empirical 
approaches due to complex process-property relationships. 
While machine learning (ML) offers promising solutions, most 
approaches treat parameters independently without leveraging 
thermomechanical principles governing the properties of the 
printed materials. This is essential for understanding the 
behaviour of fused deposition modelling (FDM) printing. This 
study investigates whether integrating elementary 
thermomechanical knowledge into feature engineering 
improves mechanical property prediction for polylactic acid 
components under data-constrained conditions. Using 50 
experimental samples from controlled printing conditions, three 
feature engineering strategies were systematically compared: 
raw process parameters, physics-informed features based on 
heat transfer and material flow principles, and polynomial 
interactions across five ML algorithms. Physics-informed 
features consistently outperformed baseline approaches, with 
Huber Regressor achieving coefficient of determination equal to 
0.817 (51.3% improvement over raw parameters). Feature 
importance analysis using SHapley Additive exPlanations 
identified layer height and nozzle temperature as primary 
predictors, with engineered thermal diffusion and density 
features contributing significantly to model performance. This 
study demonstrates the potential of physics-informed feature 
engineering for improving prediction accuracy in data-
constrained AM scenarios, providing methodological insights for 
thermomechanical integration and actionable guidance for 
industrial artificial intelligence (AI) implementation. 
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1 INTRODUCTION 

The integration of artificial intelligence (AI) applications in 
additive manufacturing has undergone substantial evolution, 

progressing from basic process monitoring to sophisticated 
predictive modeling, with recent developments in generative AI 
marking a significant advancement in the field [Truong 2025].  In 
particular, machine learning emerging as a transformative 
technology for addressing manufacturing challenges [Ng 2024]. 
The integration of ML techniques across design, process 
optimization, and quality control has demonstrated significant 
potential for advancing AM capabilities within Industry 4.0 
frameworks [Trovato 2025]. Nevertheless, contemporary ML 
approaches for mechanical property prediction in fused 
deposition modeling (FDM) predominantly rely on raw process 
parameters - layer height, nozzle temperature, print speed - 
without leveraging the underlying thermomechanical 
relationships that fundamentally govern part quality and 
performance. 
 
Current ML frameworks for AM suffer from a critical limitation: 
they treat process parameters as independent statistical 
variables rather than recognizing their interdependent effects 
governed by heat transfer, material flow, and crystallization 
physics [Faegh 2025]. This physics-agnostic approach constrains 
both model interpretability and generalization capabilities, 
particularly problematic in manufacturing environments where 
process understanding drives optimization strategies.  
 
In view of this, physics-informed ML represents an emerging 
paradigm that addresses these limitations by integrating domain 
knowledge directly into model architectures and feature 
engineering strategies [Karniadakis 2021]. Recent advances in 
process-property modeling demonstrate substantial 
improvements when physical principles constrain feature 
spaces, enabling more accurate predictions with reduced data 
requirements [Faegh 2025]. Advanced techniques including 
reinforcement learning for process optimization and Bayesian 
learning for thermal prediction have shown promise in specific 
applications [Zhu 2024]. However, the systematic application of 
thermomechanical principles to feature engineering for FDM 
property prediction remains underexplored, particularly for 
small dataset scenarios common in industrial practice. 
 
This study investigates whether integrating elementary 
thermomechanical principles into ML feature spaces can 
improve prediction accuracy for mechanical properties of FDM-
printed polylactic acid (PLA) components under data-
constrained conditions. Using a controlled experimental dataset 
of 50 specimens, three feature engineering strategies are 
systematically compared: conventional raw (standalone) 
process parameters, physics-informed features derived from 
heat transfer and material flow analysis, and polynomial 
interaction terms across five ML algorithms. The research 
addresses the practical challenge of deploying ML systems in 
manufacturing environments where training data is limited, 
providing both methodological insights for physics-informed 
feature engineering and actionable guidance for industrial 
implementation of AI-driven process optimization in AM. 

2 METHODOLOGY 

2.1 Dataset 
The dataset employed in this study was collected from 
experimental samples manufactured using an Ultimaker S5 3D 
printer at the Additive Manufacturing Laboratory, TR/Selçuk 
University, as initially described by Okudan et al. [Okudan 2018]. 
The dataset was curated to investigate the influence of 3D 
printing process parameters on the resulting mechanical 
properties of printed PLA and ABS samples, making it well-
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aligned with the objectives of this study in evaluating the 
effectiveness of feature engineering for explainable models. 
 
A total of 50 specimens, each with standardized dimensions of 
170 mm × 20 mm × 4 mm, were printed using PLA and ABS 
filaments and tested under ISO 527-2:2012 guidelines. Each 
sample is described by nine input features: 
(x₁) layer height (mm), (x₂) wall thickness (mm), (x₃) infill density 
(%), (x₄) infill pattern (grid, triangles, cubic), (x₅) nozzle 
temperature (°C), (x₆) bed temperature (°C), (x₇) print speed 
(mm/s), (x₈) material type (PLA/ABS), and (x₉) fan speed (%). 
 
The target outputs include: (y₁) surface roughness (Ra, µm) – 
measured using a MITUTOYO SJ-210 profilometer, (y₂) tensile 
strength (MPa), and (y₃) elongation at break (%) – obtained using 
a universal tensile testing machine.   
 
A detailed breakdown of all experimental parameters, including 
their symbols, ranges, and associated physical significance in the 
printing process, is provided in Tab. 1. These annotations not 
only support feature selection but also reflect underlying 
thermal, geometric, and material dynamics essential for 
downstream explainability. 
 

Table 1. Experimental Parameters and Their Physical 
Significance in AM 

Parameter Symbol Unit Physical Significance 

Process Parameters 

Layer height ℎ𝑙𝑎𝑦𝑒𝑟  mm Controls interlayer 
bonding and thermal 
mass 

Wall 
thickness 

𝑡𝑤𝑎𝑙𝑙 - Affects structural 
rigidity and wall 
strength 

Infill density ρ𝑖𝑛𝑓𝑖𝑙𝑙  % Determines material 
volume and internal 
strength 

Infill pattern - - Alters stress 
distribution and 
structural damping 

Nozzle 
temperature 

𝑇𝑛𝑜𝑧𝑧𝑙𝑒 °C Governs viscosity and 
extrusion quality 

Bed 
temperature 

𝑇𝑏𝑒𝑑  °C Affects adhesion and 
warping resistance 

Print speed 𝑣𝑝𝑟𝑖𝑛𝑡 mm
/s 

Controls thermal and 
geometric effects 

Material 
type 

- - Defines base 
mechanical and thermal 
behavior 

Fan speed 𝑣𝑓𝑎𝑛 % Controls material 
cooling 

Target Properties 

Surface 
roughness 

𝑅𝑎 µm Surface quality 

Tensile 
strength 

σ𝑈𝑇𝑆 MPa Ultimate tensile 
strength 

Elongation 
at break 

ϵ𝑏𝑟𝑒𝑎𝑘  % Ductility 

 
 

Given the limited sample size (n=50), a stratified random 
sampling approach was employed for the train-test split (80%-
20%), ensuring representative distribution of categorical 
variables (material type and infill pattern) across both subsets. 
This resulted in 40 samples for training and 10 samples for 
testing. The small dataset size necessitated careful consideration 
of model complexity to avoid overfitting, which influenced the 
choice of cross-validation strategy and tuning of the model 
hyperparameters. 
 
All samples were sliced using customized G-code configurations, 
varying the input parameters across a defined range to ensure 
design space diversity (e.g., infill density: 10–100%, layer height: 
0.02–0.2 mm). Preprocessing included min–max normalization 
for numerical inputs and one-hot encoding for categorical 
features. 
 
The dataset's controlled experimental conditions and 
comprehensive parameter coverage make it particularly 
valuable for examining the impact of feature engineering on 
prediction accuracy in AM applications. However, the limited 
sample size represents a constraint that requires robust 
validation techniques to ensure reliable conclusions. 
 
2.2 Feature Engineering Strategy 
2.2.1 Thermomechanical Foundations 
Feature engineering represents a critical component in AM 
prediction models, as raw process parameters may not fully 
capture the underlying thermomechanical phenomena 
governing mechanical properties. The FDM process involves 
complex relationships between thermal management, material 
flow that require systematic encoding through physics-informed 
transformations.  Seven engineered features are systematically 
derived from established physical relationships to capture these 
underlying mechanisms that raw process parameters cannot 
represent independently. 
 
Temperature Ratio - Dimensionless thermal driving force: 

𝑓𝑡𝑒𝑚𝑝_𝑟𝑎𝑡𝑖𝑜 =
𝑇𝑛𝑜𝑧𝑧𝑙𝑒

𝑇𝑏𝑒𝑑
   (1) 

This dimensionless parameter represents the thermal driving 
force controlling interlayer bonding efficiency. Higher ratios 
indicate greater thermal energy available for polymer chain 
interdiffusion across layer boundaries, directly influencing 
mechanical properties through enhanced adhesion mechanisms 
[Jaganathan 2024]. 
 
Temperature Difference - Absolute thermal gradient: 

𝑓𝑡𝑒𝑚𝑝_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑇𝑛𝑜𝑧𝑧𝑙𝑒 − 𝑇𝑏𝑒𝑑  (2) 

The absolute temperature differential serves as the driving force 
for heat transfer according to Newton's law of cooling: 𝑞 =  ℎ ⋅
𝐴 ⋅ Δ𝑇. This gradient determines cooling rates, thermal stress 
development, and crystallization kinetics in semi-crystalline 
polymers like PLA [Siddiqui 2024]]. 
 
Cooling Index - Normalized cooling effectiveness: 

𝑓𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑖𝑛𝑑𝑒𝑥 =
𝑣𝑓𝑎𝑛

𝑇𝑛𝑜𝑧𝑧𝑙𝑒
   (3) 

This feature quantifies cooling effectiveness relative to initial 
thermal energy. Higher cooling rates promote rapid 
solidification, affecting crystal structure formation, stress 
relaxation patterns, and dimensional accuracy of printed 
components [Ranjbar 2021]]. 
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Speed-Layer Ratio - Shear rate approximation: 

𝑓𝑠𝑝𝑒𝑒𝑑_𝑙𝑎𝑦𝑒𝑟_𝑟𝑎𝑡𝑖𝑜 =
𝑣𝑝𝑟𝑖𝑛𝑡

ℎ𝑙𝑎𝑦𝑒𝑟
   (4) 

This parameter approximates the apparent shear rate in the 

nozzle based on γ̇ =
𝑑𝑢

𝑑𝑦
 for flow in narrow channels. Shear rate 

directly influences polymer melt viscosity through non-
Newtonian behavior η = η(γ̇) affecting polymer chain 
orientation, flow instabilities, and resulting mechanical 
anisotropy [Ranjbar 2021]]. 

 
Layer-Wall Ratio - Geometric aspect ratio: 

𝑓𝑙𝑎𝑦𝑒𝑟_𝑤𝑎𝑙𝑙_𝑟𝑎𝑡𝑖𝑜 =
ℎ𝑙𝑎𝑦𝑒𝑟

𝑡𝑤𝑎𝑙𝑙
   (5) 

This geometric ratio captures the structural aspect relationship 
affecting stress concentration and load distribution mechanisms. 
The ratio influences the trade-off between printing resolution 
and structural integrity, with implications for failure modes and 
mechanical performance [Beșliu-Băncescu 2023]. 
 
Density Volume - Three-dimensional material distribution: 

𝑓𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑣𝑜𝑙𝑢𝑚𝑒 = ρ𝑖𝑛𝑓𝑖𝑙𝑙 × ℎ𝑙𝑎𝑦𝑒𝑟 × 𝑡𝑤𝑎𝑙𝑙  (6) 

This feature represents the effective material content per unit 
length of the printed path. It captures three-dimensional packing 
effects where voids between deposited filament layers 
significantly impact tensile strength through their interaction 
with geometric parameters. The feature directly correlates with 
load-bearing capacity and mechanical properties [Beșliu-
Băncescu 2023]. 
 
Efficiency Index - Manufacturing productivity measure: 

𝑓𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑖𝑛𝑑𝑒𝑥 =
𝑣𝑝𝑟𝑖𝑛𝑡×ρ𝑖𝑛𝑓𝑖𝑙𝑙

ℎ𝑙𝑎𝑦𝑒𝑟
  (7) 

This productivity index quantifies material deposition rate 
normalized by resolution, representing the manufacturing 
efficiency trade-off. Higher values indicate faster material 
deposition but may compromise surface quality, while lower 
values suggest higher resolution at reduced throughput. This 
feature captures rheological property effects on printability and 
overall part quality in extrusion-based systems [Gillispie 2023]. 
 
2.2.2 Feature Engineering Approaches 
Building upon the thermomechanical foundations established in 
Section 2.2.1, three distinct feature engineering strategies were 
systematically implemented to evaluate the impact of physics-
informed transformations on prediction accuracy. Each 
approach represents a different philosophy for encoding 
process-structure-property relationships in ML models for AM. 
 
Baseline Features 
The baseline feature set comprises the nine original process 
parameters extracted from the dataset without modification, 
serving as the control condition for evaluating feature 
engineering effectiveness. This approach represents current 
standard practice in AM modelling studies and provides the 
reference point for measuring improvement. 
 
Domain-Specific Engineered Features 
The physics-informed strategy transforms the nine raw 
parameters into seven engineered features using the 
thermomechanical relationships defined in Equations (1)-(7). 
This approach systematically encodes domain knowledge by 

creating features that directly represent physical phenomena 
governing FDM part quality [Karniadakis 2021]. Each engineered 
feature captures specific thermomechanical mechanisms:  

 Thermal features (Equations 1-3) encode heat transfer and 
crystallization effects through temperature ratio, thermal 
gradient, and cooling effectiveness. Temperature-based 
parameters can significantly influence crystallinity and 
mechanical properties with 20-30% improvement potential 
[Jaganathan 2024]. 

 Flow features (Equations 4-5) represent polymer rheology 
and geometric constraints via shear rate approximation and 
aspect ratio relationships. Flow-related features such as speed-
layer ratio represent shear rate proxies critical for non-
Newtonian flow behavior of polymer materials, where shear 
rates in narrow printer nozzles are typically very high and directly 
affect melt viscosity and deformation behavior [Ranjbar 2021].  

 Material features (Equations 6-7) capture three-
dimensional packing effects and manufacturing efficiency 
through density-volume interactions. Structural features 
including density volume account for three-dimensional packing 
effects, as voids between deposited filament layers significantly 
impact tensile strength and are determined by the interaction of 
geometric parameters [Beșliu-Băncescu 2023] 
 
Polynomial Interaction Features 
To systematically capture pairwise parameter interactions 
without assuming specific functional forms, polynomial features 
were generated using degree-2 interaction terms (excluding 
squared terms). This automated approach complements 
domain-specific engineering by exploring potential synergistic 
effects between process parameters that may not be evident 
from physical intuition alone. The initial expansion from 9 base 
features produced 36 interaction terms, which were reduced to 
25 features through variance thresholding (variance > 0.01) to 
maintain a reasonable feature-to-sample ratio (1:2) and prevent 
overfitting given the limited dataset size (n=50). This approach 
enables discovery of non-linear parameter coupling effects while 
maintaining computational tractability and model 
interpretability. 
 
2.3 Model Selection and Configuration 
The model selection strategy evaluates predictive performance 
across different algorithmic approaches. Given the dataset size 
(n=50) and complex thermomechanical relationships in AM, 
models were selected to represent linear, robust, and ensemble 
approaches while maintaining conservative complexity to 
prevent overfitting. 
 
Linear Methods: Ordinary Least Squares (OLS) provides an 
interpretable baseline with direct coefficient interpretation for 
understanding process parameter effects in manufacturing 
contexts. Ridge Regression (α = 1.0) addresses potential 
multicollinearity between process parameters through L2 
regularization. 
 
Robust Regression: Huber Regressor (ε = 1.35) handles outliers 
commonly present in manufacturing data due to measurement 
errors or process variations. This approach maintains efficiency 
for normal data while providing robustness against extreme 
values. 
 
Ensemble Methods: Random Forest (n_estimators=50, 
max_depth=5) captures non-linear interactions and threshold 
effects characteristic of thermomechanical behavior in 3D 
printing. XGBoost (n_estimators=50, max_depth=3) provides 
gradient boosting with built-in regularization capabilities. 
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Conservative hyperparameters were chosen to prevent 
overfitting given the small dataset size. 
 
It should be noted that deep learning approaches were excluded 
due to insufficient training data. The MultiOutputRegressor 
wrapper enables simultaneous prediction of three correlated 
mechanical properties, reflecting their interdependent nature in 
AM. 
 
2.4 Metric 
The evaluation strategy herein addresses the challenges of 
limited data (n=50) through robust validation and 
comprehensive metric selection. Mean Absolute Error (MAE) is 
used as the primary metric for its direct engineering 
interpretability and outlier robustness, while Mean Squared 
Error (MSE) provides complementary assessment by penalizing 
larger prediction errors more heavily. This is critical for avoiding 
significant outliers in mechanical property predictions. The 
Coefficient of Determination (R²) averaged across three 
mechanical properties offers normalized overall performance 
assessment independent of measurement units. 
 
The validation approach combines stratified holdout testing 
(80/20 split) with 5-fold cross-validation using custom multi-
output scoring. Stratification ensures representative distribution 
of categorical variables, while cross-validation provides robust 
performance estimates despite the small dataset. The statistical 
significance was assessed through bootstrap confidence 
intervals and paired testing across multiple random seeds to 
ensure reliable comparative conclusions between feature 
engineering approaches. 
 
2.5 Integrated Methodology Framework 
Fig. 1 presents the methodology framework integrating all 
experimental components from data input through final 
analysis. The flowchart illustrates the systematic evaluation of 
three feature engineering strategies across five ML algorithms, 
with consistent validation procedures and interpretability 
analysis through SHAP. 
 

 
Figure 1. Methodology flowchart 

This integrated approach enables direct comparison of physics-
informed feature engineering against baseline and automated 
approaches, providing empirical validation of the 
thermomechanical principles encoded in Equations (1)-(7) while 
establishing practical guidelines for industrial AM applications. 

3 RESULTS 

3.1 Baseline Performance with Original Features 

The baseline evaluation using original nine process parameters 
established reference performance levels across five ML 

algorithms. XGBoost demonstrated the strongest baseline 
performance (R² = 0.650, MAE = 8.41), effectively capturing non-
linear relationships in the raw parameter space. Linear methods 
showed moderate effectiveness with Linear Regression (R² = 
0.582) substantially outperforming Ridge Regression (R² = 
0.463), while Huber Regressor exhibited balanced performance 
(R² = 0.540, MAE = 10.81) with robust outlier handling. 

3.2 Feature Engineering Impact Assessment 

 

Figure 2. Coefficient of determination (R²) performance 
comparison across five ML algorithms and three feature 
engineering strategies. 

 

Figure 3. Error metric analysis showing MAE and Root and Mean 
Square Error RMSE across different algorithms and feature 
strategies 

The implementation of thermomechanically-informed 
engineered features yielded substantial improvements across all 
algorithms. Huber Regressor achieved optimal overall 
performance with R² = 0.817, representing a 51.3% 
improvement over its baseline performance. This exceptional 
result (MAE = 6.85, RMSE = 10.38) establishes the Huber-
Engineered combination as the best-performing configuration in 
this study. 

Linear Regression demonstrated remarkable improvement with 
engineered features, achieving R² = 0.811 (39.3% increase from 
baseline), indicating that thermomechanical transformations 
effectively linearized the underlying process-property 
relationships. Even Ridge Regression achieved substantial 
improvement (R² = 0.631, 36.3% increase), suggesting that 
engineered features mitigated multicollinearity issues present in 
the expanded feature space. 

Data Input

Feature Engineering Strategies

ML Training

Validation

SHAP Analysis
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The comprehensive performance analysis presented in Fig. 2 and 
Fig. 3 demonstrates the systematic superiority of physics-
informed feature engineering across multiple algorithmic 
approaches. Fig. 2 shows that engineered features consistently 
achieve higher R² values, with Huber Regressor reaching optimal 
performance (R² = 0.817, representing 51.3% improvement over 
baseline). The corresponding error analysis in Fig. 3 confirms 
these findings, showing substantial reductions in both MAE and 
RMSE metrics for physics-informed approaches. Notably, the 
performance patterns reveal distinct algorithm-feature 
synergies. Linear methods (Linear and Ridge Regression) show 
exceptional improvement with engineered features, achieving 
R² values of 0.811 and 0.631 respectively, indicating successful 
linearization of thermomechanical relationships. This validates 
the hypothesis that physics-informed transformations create 
feature spaces more suitable for linear algorithms to capture 
complex process-property relationships that would otherwise 
require sophisticated non-linear methods. The consistent 
improvements across four of five algorithms provide strong 
empirical validation of the thermomechanical principles 
encoded in Equations (1)-(7), demonstrating both the 
robustness and practical applicability of this approach for 
industrial AM applications. 

3.3  Comparative Performance Analysis 

 

 

Figure 4. Feature engineering impact on Huber Regressor 
prediction accuracy across three mechanical properties: (top) 
engineered features, (bottom) original features. 

Fig. 4 demonstrates the substantial improvement in Huber 
Regressor performance achieved through engineered features, 
comparing prediction accuracy across the three mechanical 
properties (surface roughness, tensile strength, and elongation 
at break). Engineered features achieved superior performance 
across all evaluation metrics, with the top three combinations all 
utilizing domain-specific features: Huber-Engineered (R² = 
0.817), Linear-Engineered (R² = 0.811), and Ridge-Engineered (R² 
= 0.631). 

The visual comparison in Fig. 4 clearly illustrates how engineered 
features enable the same algorithm (Huber Regressor) to 
achieve markedly better prediction accuracy across all three 
mechanical properties, with improved alignment along the ideal 
prediction line and reduced prediction scatter. A critical finding 
is the consistent underperformance of polynomial features 
despite their higher dimensionality (27 vs. 16 features). 

3.4 Feature Importance Analysis 

SHapley Additive exPlanations (SHAP) analysis was conducted on 
the optimal Huber-Engineered model to quantify individual 
feature contributions to prediction accuracy (Fig. 5). 

  

Figure 5. SHAP Feature Importance Analysis 

Table 2 presents the top ten most influential features from the 
16-feature engineered set, with layer height emerging as the 
most influential feature with a SHAP value of 46.18, followed by 
nozzle temperature at 35.10. The engineered density volume 
feature ranked third in importance (8.75), substantially 
outperforming its constituent original parameters when 
considered individually. 

Table 2. Top 10 Feature Importance Ranking 

Rank Feature SHAP 
Value 

Type 

1 layer_height  46.18  Original 

2 nozzle_temperature  35.10  Original 

3 density_volume  8.75  Engineered 

4 layer_wall_ratio  6.32  Engineered 

5 temperature_ratio  3.05  Engineered 

6 bed_temperature  2.78  Original 

7 infill_density  2.18  Original 

8 infill_pattern_honeycomb  1.86  Original 

9 wall_thickness  1.47  Original 

10 speed_layer_ratio  0.69  Engineered 

Among the top-ranking engineered features shown in Tab. 2, 
layer-wall ratio demonstrated notable importance (6.32), while 
thermal-based engineered features showed moderate 
contributions with temperature ratio achieving 3.05 and bed 
temperature 2.78. Original process parameters showed lower 
individual importance scores, with infill density (2.18), infill 
pattern honeycomb (1.86), and wall thickness (1.47) ranking in 
the middle tier. 
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The top 10 ranking in Tab. 2 reveals that speed-layer ratio (0.69) 
represents the threshold for meaningful feature contribution, 
with the remaining 6 engineered features showing progressively 
lower importance values. The SHAP value distribution 
demonstrates a clear hierarchy in feature relevance, with the top 
five features accounting for the majority of predictive influence 
in the optimal model configuration. 

The dominance of layer height and nozzle temperature aligns 
with established thermomechanical principles in FDM. Layer 
height directly controls interlayer contact area and thermal 
mass, fundamentally governing mechanical properties. Nozzle 
temperature determines viscosity and flow characteristics of the 
polymer material, which are critical for layer adhesion. The 
remaining 18.81% contribution from engineered features 
represents meaningful enhancement by capturing interaction 
effects that individual parameters cannot express. This 
hierarchical importance validates both the physical 
understanding and engineered feature design. 

3.5 Cross-Validation Performance Analysis 

Tab. 3 presents the comprehensive performance comparison 
across all feature engineering strategies based on 5-fold cross-
validation results averaged across three mechanical properties 
(surface roughness, tensile strength, and elongation at break): 

Table 3. Statistical Validation of Feature Engineering 
Performance 

Algorithm Original 
R² 

Engineered R² Improvement  

Huber  0.540 0.817 +51.3% 

Linear 
Regression 

0.582 0.811 +39.3% 

Random 
Forest 

0.599 0.610 + 1.8% 

Ridge  0.463 0.631 +36.3% 

XGBoost 0.650 0.586 -9.8% 

Note: Performance based on 5-fold cross-validation averaged 
across three target properties. 

Key Performance Findings 

Huber Regressor Excellence 

 Achieved the highest predictive performance with 
engineered features (R² = 0.817) 

 Outperformed the baseline by +51.3%, highlighting 
the advantage of robust regression 

 Validates the strong synergy between physics-
informed feature engineering and robust modeling 
techniques 

Linear Method Effectiveness 

 Linear Regression yielded a significant performance 
gain (R² = 0.811, +39.3% improvement) 

 Confirm that the thermomechanical relationships 
were successfully linearized through feature 
transformation 

 Ridge Regression also benefited considerably (+36.3% 
improvement), despite the impact of regularization 

Ensemble Method Analysis 

 Ensemble models such as XGBoost and Random 
Forest showed marginal or negative improvements 

 Indicates that complex models may not capitalize on 
explicitly engineered, physics-informed features 

 Suggests that simpler or more interpretable models 
are better aligned with domain-informed inputs 

4 DISCUSSION 

4.1  Feature Engineering Effectiveness 

The superior performance of thermomechanically-informed 
engineered features represents a significant advancement in AM 
prediction models. The substantial improvement achieved by 
the Huber-Engineered combination demonstrates that 
incorporating domain-specific physical principles enhances 
predictive capability beyond what raw process parameters can 
provide. 

The SHAP analysis provides crucial validation of both the 
engineered feature design and the underlying physical 
assumptions. While the two most influential features remain 
original parameters - layer height and nozzle temperature - four 
of the top-ranking features are engineered transformations that 
capture critical physical interactions. This pattern demonstrates 
that engineered features effectively complement rather than 
replace fundamental process parameters, enhancing the 
model's ability to capture complex thermomechanical 
relationships. 

The density_volume feature exemplifies successful feature 
engineering, achieving substantially higher importance than its 
constituent parameters when considered individually. This 
validates the hypothesis that three-dimensional geometric 
interactions provide superior predictive value compared to 
isolated parameter effects. Similarly, the layer_wall_ratio 
demonstrates how dimensionless geometric relationships can 
capture structural effects that individual measurements cannot 
represent. 

The consistent failure of polynomial features across multiple 
algorithms highlights the critical importance of physics-informed 
feature design over automated expansion. Despite generating 
more features, the polynomial approach failed to create 
meaningful physical relationships and introduced overfitting 
complications in the small-dataset scenario. 

4.2  Algorithm Performance Insights 

Huber Regressor's exceptional performance with engineered 
features reveals important insights about robust regression's 
suitability for AM applications. The SHAP analysis reveals that 
the algorithm effectively exploits both high-impact individual 
features and moderate-impact engineered interactions, 
suggesting optimal alignment between the robust regression 
approach and the engineered feature representations. 

The dominance of layer height and nozzle temperature in the 
feature importance ranking aligns with established 
thermomechanical principles, where layer thickness directly 
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controls interlayer bonding area and thermal mass effects, while 
nozzle temperature governs polymer viscosity and flow 
characteristics. The algorithm's ability to properly weight these 
fundamental parameters while simultaneously leveraging 
engineered interaction terms demonstrates sophisticated 
feature utilization. 

The substantial 81.28% predictive contribution from these two 
primary features reflects the fundamental thermal-geometric 
coupling in polymer processing, where layer thickness and 
processing temperature directly control the primary bonding 
mechanisms in FDM. This concentration is consistent with 
process-structure-property relationships observed in polymer 
manufacturing, where 2-3 dominant variables typically account 
for 70-85% of mechanical property variation. The remaining 
18.72% from engineered features, particularly density_volume 
(8.75%) and layer_wall_ratio (6.32%), provides meaningful 
enhancement by capturing synergistic interaction effects that 
individual parameters cannot express independently. This 
hierarchical importance validates the physics-informed 
approach, demonstrating that engineered features effectively 
complement rather than compete with fundamental process 
drivers. 

The strong performance of Linear Regression with engineered 
features becomes more interpretable through the SHAP 
analysis, which reveals a clear feature hierarchy that linear 
models can effectively exploit. The relatively balanced 
importance distribution among the top features suggests that 
the engineered feature set successfully linearized complex 
interactions without creating problematic multicollinearity. 

Ensemble methods' failure to consistently outperform linear 
approaches may relate to their inability to properly weight the 
engineered features' physical significance. The feature 
importance analysis suggests that the carefully designed feature 
hierarchy requires algorithms capable of recognizing and 
preserving these physically meaningful relationships rather than 
treating all features as equivalent inputs. 

4.3 Physical Validation and Feature Design Insights 

The SHAP analysis provides compelling validation of the 
thermomechanical principles underlying the engineered feature 
design. The moderate importance of thermal-based features 
confirms their role in capturing thermal interaction effects while 
avoiding redundancy with the dominant nozzle temperature 
parameter. This pattern demonstrates successful feature 
engineering that enhances rather than duplicates existing 
information. 

The relatively lower importance of some engineered features 
suggests opportunities for feature set optimization. However, 
their inclusion remains justified as they may capture critical 
effects for specific parameter combinations or contribute to 
prediction stability across the full experimental range. 

The clear separation between high-impact features, moderate-
impact engineered features, and lower-impact parameters 
provides practical guidance for process control prioritization in 
manufacturing environments where not all parameters can be 
optimally controlled simultaneously. 

4.4  Manufacturing Applications and Practical Significance 

The achieved prediction accuracy levels approach industrial 
requirements for AM quality control systems. The SHAP analysis 
provides additional practical value by identifying which 
parameters require the most precise control and which 

engineered relationships should be monitored for optimal 
quality outcomes. 

The feature importance hierarchy suggests that manufacturing 
process control systems should prioritize monitoring and 
feedback for layer height and nozzle temperature while 
implementing secondary control loops for the engineered 
feature combinations. This layered control approach could 
optimize both computational efficiency and control 
effectiveness in real-time manufacturing environments. 

The substantial performance improvement from feature 
engineering combined with the interpretability provided by 
SHAP analysis demonstrates clear return on investment for 
implementing physics-informed prediction models in 
manufacturing environments. The ability to identify and quantify 
the most critical parameter interactions enables transition from 
reactive quality control to predictive process optimization with 
clear understanding of which variables drive quality outcomes. 

4.5  Limitations and Future Research Directions 

Several limitations constrain the generalizability of these 
findings. The limited dataset size necessitates validation with 
larger experimental datasets to confirm both the robustness of 
the feature engineering approach and the stability of the SHAP 
importance rankings across diverse printing conditions and 
material systems. 

Future research should investigate whether the identified 
feature importance hierarchy remains consistent across 
different material types, printer configurations, and target 
properties. The development of adaptive feature engineering 
frameworks that can automatically adjust feature importance 
weighting based on specific manufacturing contexts represents 
a promising research direction. 

The integration of real-time SHAP analysis with process 
monitoring systems could enable dynamic feature importance 
tracking, allowing manufacturing systems to adapt control 
strategies as equipment characteristics change over time. This 
approach could bridge the gap between static prediction models 
and adaptive manufacturing control systems. 

4.6 Validation Against Previous Studies 
The achieved improvements align with recent advances in 
physics-informed ML for AM. Faegh et al. (2025) reported 15-
40% improvements when incorporating thermomechanical 
principles in process-structure-property modeling, consistent 
with the 36-51% improvements herein this study. The 
dominance of layer height and nozzle temperature in SHAP 
rankings confirms findings from multiple studies on FDM 
parameter optimization. 
  
Comparison with Recent AM-ML Studies:  
- Current study (Huber-Engineered): R² = 0.817, n=50  
- Conventional ML approaches: R² = 0.4-0.7 (typical range)  
- Physics-informed approaches: R² = 0.6-0.8 (Faegh 2025) 

The 51.3% improvement demonstrates superior performance 
particularly in small-dataset scenarios (n=50), addressing a 
critical gap where most studies require hundreds of samples. 

5 CONCLUSIONS 

This study proposes a framework to systematically evaluate the 
effects of process parameters and their interactions on the 
properties of FDM-printed specimens. The results show that, in 
addition to conventional standalone printing parameters that 
are traditionally used, combinations of these parameters into 
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engineered features with physical significance can lead to higher 
accuracy in ML predictions. This is evident from the feature 
importance ranking, where three engineered features are 
ranked just behind the top two original FDM printing 
parameters. It is also worth noting that the feature importance 
analysis using SHAP supports the common understanding that 
layer height, nozzle temperature, and the interplay among wall 
thickness, layer thickness, and total printed volume are key 
determinants of surface roughness and tensile properties in 
FDM-printed samples. Regarding polynomial features, the 
findings suggest that although feature engineering can generate 
many derived features, this does not necessarily guarantee that 
the hidden thermo-mechanical behavior of the printed material 
can be captured. Subsequently, some generated features may 
have limited utility in accurately predicting the properties of 
printed samples using ML models. 
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