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The paper describes an approach to the activation energy and 
diffusivity calculation concept for the formation of bimetallic 
structures, which is based on the interatomic potential idea. A 
comparative analysis of the computed values obtained with the 
proposed model and the real data for a range of metals has 
been carried out, which demonstrates and confirms the 
accuracy and validity of the model, which needs further 
refinement. This is not inconsistent with the justification of the 
possibility of using this method, with certain assumptions, to 
deal with theoretical issues in the field of development and 
analysis of the interaction of elements, structure, and 
parameters of bimetallic materials. The proposed model does 
not contradict the available experimental data and provides 
some promise for its further development and improvement. 
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1 INTRODUCTION  

Since the first mathematical models of neurons [McCulloch 
1943], artificial neural networks have come a long way in 
development, becoming the foundation of artificial intelligence. 
Modern ANNs demonstrate exceptional efficiency in highly 
specialized tasks (pattern recognition, natural language 
processing). However, despite impressive practical successes, a 
fundamental gap remains between biological reality and its 
computational models. The successes of ANNs are based on 
statistical patterns, not on the reproduction of the principles of 
biological brain operation. The gap between ANNs and 
biological neural networks (BNNs) manifests itself in three key 
aspects: a simplified view of neural signal transmission and 
processing; ignoring the spatio-temporal organization of neural 
ensembles; and the lack of genuine mechanisms of self-
organization and adaptation. In this paper, we formulate an 
alternative approach to modeling neural-like networks. We 
conduct a systematic analysis of the limitations of existing 
generations of ANNs, justify the necessity of considering 
biological principles, propose a new architecture based on self-
organizing networks of uniform elements (SNUE), and define 
promising research directions. In accordance with the concepts 
prevailing in the scientific community, the atomic interaction 
takes place by Coulomb interaction between their nuclei and 
electron shells [Baranov 1998, Kittel 2005]. With that 
knowledge in mind, assuming that the inner shells of atoms 

shield the nucleus, and the interaction between atoms in the 
crystalline state is mainly due to the outermost shells, whose 
density is many times less than the inner ones, the influence of 
quantum effects in the interatomic interaction is insignificant 
[Baranov 1984, Miglierini 2004 & 2006, Naumov 2012]. Having 
assumed that the electron configurations of atoms are known, 
the potential energy of their interaction (the so-called 
interatomic potential) can be defined as the Coulomb 
interaction between atomic nuclei and shells. Consequently, 
the basic elements are not indispensable for the configuration 
of the outermost electron shells to be determined. Assuming 
that the form of the electron density distribution function in an 
atom is known, the parameters of this distribution are enough 
to define the experimental characteristics of single-component 
crystals, in particular, metals as a base [Vol 1962]. These 
parameters can be defined by solving the appropriately casted 
inverse problem of electrostatics and should, accordingly, show 
themselves in the expression for the interatomic potential, if 
one can be found. This point is essential, since with a known 
electron density distribution in an atom, it becomes possible to 
describe multicomponent systems. By modifying the kind of 
this distribution, it is possible to ensure that the calculated 
values of the known crystal characteristics are sufficiently close 
to the experimental ones. In this case, the type of electron 
distribution can be assumed to be approximately the same as 
real atoms. 

2 MATERIAL AND METHODS 

The potential of the electrostatic interaction between atoms 
unambiguously depends on the nature of the electron density 
distribution in the atomic shells. In the proposed model, the 
electron density of atoms is defined as the density of the inner 
and outermost shells [Orlov 1983]. The density of inner shells 
can be considered localized near the nucleus in such a way that 
their overlap with the electron density of neighboring atoms 
can be disregarded. 
We assume that q1 the charge of the outermost shells is evenly 
distributed on the surface of a thin sphere of radius R1 centered 
on the atomic center, and it is compensated by a part of the 
charge of the nucleus that is not compensated by the charge of 
the inner shells. 
Let us see in detail about the interaction between atoms 1 and 
2 with the parameters of the distributions (R1, q1) and (R2, q2), 
respectively. Let R be the distance between the centers of the 
atoms (Figure 1). 

 
Figure 1. Diagram of the overlap of the electron shells of atoms 1 and 2 

In accordance with the above, the interaction between atoms is 
caused only by electrostatic forces; in this case, the potential of 
interatomic interaction can be represented in the following 
form: 

          (1) 

Where the first term is responsible for the interaction between 
the electron shells of atoms 1 and 2, the second and third 
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terms, respectively, correspond to the interaction between 
shells and nuclei, respectively, and the last term refers to the 
interaction between nuclei. 
Generally, each of the terms (formula 1) can be found by the 
integration of the Coulomb interaction energy density of the 
corresponding electronic distributions. 
The energy of interaction between nuclei is the simplest to be 
determined: 

                                                                          (2) 

where k is the coefficient that depends on the unit amount 
system. In particle physics, the charge is usually measured in 
elementary electric charges e, the distance, respectively, in 
angstroms, and the energy in electron volts [Gulyaev 2022]. 
Having this choice, the coefficient can be written as follows: 

                                                                  (3) 
Denoting the potential of the outermost electron shells of atom 
1 at a distance r from the nucleus by Φ1(r), and by Φ2(r) the 
corresponding potential of the outermost electron shells of 
atom, we have: 

                                             (4) 

The potential Φ2(r)has the same form.  
In this case, the energies of interaction between charged 
spheres and the nuclei of neighboring atoms have been written 
as follows: 

       (5) 

       (6) 
Next, the interaction between the shells of atom 1 and atom 2 
needs to be considered. Obviously, when the electron shells do 
not overlap at large interatomic distances, the interaction 
between shells takes the following form: 

                                                                (7) 

which, in fact, corresponds to the energy of the interaction 
between the nuclei (2). 
In the case of overlapping electron shells of atoms, the overlap 
condition can be represented as an inequality R<R1+R2. 
Let us define the radius vector  with the tail located at the 

center of the nucleus of atom 1 and the head at the electron 
shell point of atom 2, near which the charge dq2 is located; that 
is one of the points of sphere 2. Then the interaction between 
shells takes the following form: 

                                       (8) 

The charge dq2 (formula 8) refers to a certain part of the charge 
of the shell of the atom 2 located on a thin ring of radius h and 
width dl (Figure 1). The distance from any point of this ring to 
the corresponding nuclei remains unchanged. Accordingly 

                                 (9) 

The potential  should be represented as two integrals, in 

the first of which integration runs over the area of sphere 2 

located inside the sphere with radius R1, and in the second over 
the remaining part of sphere 2: 

   (10) 

The integration results look like this 

        (11) 

For definiteness, let us assume that R1>R2. In this case, after 
combining expressions (2), (5), (6) and (11), the formula (1) for 
the interatomic potential can be written as a piecewise smooth 
function: 

  (12) 
Assuming that the interacting atoms are the identical, i.e.,     
q1=q2, and R1=R2, after the suitable transformations, the 
expression for the interatomic potential significantly simplifies 
to the following expression: 

                (13) 

Figure 2 shows the type of interatomic potential (121) and its 
components. The analysis of the graph shows that the 
interatomic potential is a piecewise smooth function with 
singular points R = R1 and R= R2. 
The internal energy of a single-component crystal is 
represented as the sum of the energies of paired interatomic 
interactions: 

                                                             (14) 

where has the form of the expression (14), a is a lattice 

constant. 

Figure 2. Type of interatomic potential (11) (thickened line) and its 

components. (q1=1, R1= 1,5 Å), (q1=1, R1= 1,0 Å) where: 
1 - (𝜙𝑛1

− 𝜙𝑛2
), 2 - (𝜙𝑛2

− 𝜙𝑐1
), 3 - (𝜙𝑛1

− 𝜙𝑐2
), 4 - (𝜙𝑐1

− 𝜙𝑐2
)  
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For definiteness, decided  . Then, calculated using the 

formula (14) the dependence U(a) for elements with a face-
centered cubic (FCC) lattice has the form shown in Figure 3. 

 
Figure 3. The dependence of the internal energy of an element with an 
FCC lattice on a lattice constant (a) and the scheme for determining the 

equilibrium value of the lattice constant 

3 RESULTS AND DISCUSSION 

Analysis of the graph develops a conviction that the 
dependence of the internal energy on the lattice constant is 
also a piecewise smooth function. The presence of piecewise 
smoothness intervals is due to the fact that the lattice constant 
of an increasing number of spheres falls within the range of the 
potential . 

Formally, condition (15) can be met at several points in 
particular, at the singular points of the curve. However, these 
values of lattice constant are not acceptable in terms of 
physics. An identical functional connection U(a) is obtained 
with another choice . In view of these circumstances, it 

becomes obvious that the derivative must be determined 

using numerical techniques, in particular mesh schemes. In this 
case, the differentiation step Δa should be chosen large enough 
to cover several smooth intervals (Figure 3). 
Let us determine the trial value of the lattice constant a_1in the 
vicinity of the expected one for a sufficiently large interval Δa. 
The values of the internal energy at points a1-Δa, a1, a1+Δa are 
denoted, respectively, as U1, U2, U3; that is U1=U(a1-Δa), 
U2=U(a1), U3=U(a1+Δa). These three points determine a 
parabola. The position of the minimum of this 2-degree 
polynomial indicates the equilibrium value of the lattice 
constant a0. The value of the minimum energy on the parabola 
must correspond to the value of the sublimation energy Es. By 
successive varying the value R1, it can be chosen in such a way 
that the found using the above-described schemes value of the 
lattice constant corresponds to the experimental value a0. 
The value of the shell charge is chosen from the condition (14), 
taking into account the parabola minimum’s depth. 
The diagram above shows that the values R1 are determined 
only by the type of crystal lattice and the value a0. Therefore, 

for metals with the same type of crystal lattice, the ratio   
should remain unchanged. Indeed, calculations show that for 

metals with a FCC lattice the ratio   is equal to 0.75007. This 
means that the interatomic interaction is nonzero only for 

atoms located at the distance of the first coordination shells. 
Moreover, the atoms located at the distance of the first 
coordination shell (r1=0,707,a0<R1 ) are repelled from each 
other. In contrast, atoms located in the nodes of the second or 
fourth shells have mutual attraction. 
A slightly different picture is for crystals with a body-centered 

cubic (BCC) lattice, where  =1,00249. The potential in the BCC 
lattice consists of six spheres. Moreover, the first two shells 
demonstrate “repulsion”, and the third to the sixth, 
respectively, realize “attraction”. 
The absolute value R1 and charge value, expressed in 
elementary charges, found according to the above scheme for 
most elements with a FCC and BCC lattice, together with the 
initial experimental values of the lattice parameter and the 
sublimation energy, are shown in Table 1. 

Table 1. Initial experimental data and calculated values of parameters 
R1 and q1 for some elements [Baranov 2017] 

Element Initial experimental data Calculated Value 

Lattice 

Type 

a0, Å ES,Ev  R1, Å q1/e 

Li, Lithium BCC 3.509 1.650 3.5177 0.5014 

Na, Natrium BCC 4.291 1.130 4.3017 0.4589 

K, Kalium BCC 5.247 0.941 5.2601 0.4630 

Rb, Rubidium BEC 5.700 0.858 5.7142 0.4608 

Cs, Cesium BCC 6.140 0.827 6.1523 0.4696 

V, vanadium BCC 3.028 5.300 3.0355 0.8348 

Cr, Сhromium BCC 2.885 4.100 2.8922 0.7167 

Fe, Ferrum BCC 2.866 4.290 2.8731 0.7307 

Nb, Niobium BCC 3.301 7.470 3.3092 1.5566 

Mo, 
Molybdenum 

BCC 3.147 6.810 3.1548 0.9647 

Ba, Barium BCC 5.025 1.860 5.0375 0.6371 

W, Wolfram BCC 3.165 8.660 3.1729 1.0909 

Eu, Europium BCC 4.606 1.800 4.6175 0.6000 

Ta, Tantalum BCC 3.805 8.089 3.8145 1.1561 

Pa, 
Protactinium 

BCC 3.925 5.460 3.9348 0.9647 

Ne, Neon FCC 4.430 0.020 3.3228 0.0544 

Ar, Argon FCC 5.260 0.080 3.9454 0.1186 

Kr, Krypton FCC 5.720 0.116 4.2979 0.1491 

Al, Aluminium FCC 4.049 3.340 3.0370 0.6725 

Ca, Calcium FCC 5.582 1.825 4.1869 0.5836 

Ni, Nickel FCC 3.524 4.435 2.6432 0.7229 

Cu, Cuprumr FCC 3.615 3.500 2.7115 0.6504 

Rh, Rhodium FCC 3.803 5.752 2.8525 0.8552 

Pd, Palladium FCC 3.889 3.936  2.9170 0.7154 

Ag, Argentum FCC 4.086 2.960 3.0648 0.6359 

Ir, Iridium FCC 3.839 6.930 2.8795 0.9432 

Pt, Platinum FCC 3.923 5.852 2.9425 0.8762 

Au, Aurum FCC 4.079 3.780 3.0595 0.7180 

Ce, Сerium FCC 5.161 4.770 3.8711 0.9073 

Pr, 
Praseodymium 

FCC 5.160 3.900 3.8704 0.8203 

Yb, Ytterbium FCC 5.486 1.600 4.1149 0.5418 

Pb, Plumbum FCC 5.084 5.926 3.8134 1.0037 
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It should be noted that the values R1of and q1 given in Table 1, 
are not the only solutions obtained in accordance with above-
described algorithm. For example, an alternative solution for Fe 
can be R1/a0=2,07 and q1=0,762. However, such solution means 
that atoms located at a distance of up to the 12th coordination 
shell should interact, which seems implausible. 
The internal energy of an ordered alloy per structural unit is 
calculated from the relation: 

                                    (14) 

Here: 
the index m denotes the number and type of an atom in the 
structural unit of the superstructure under consideration (for 
example, Fe1, Fe2, Fe3, Al1 in the structural unit Fe3Al of the 
corresponding alloy with the superstructure D03;  
n – the number and type of an atom from the mth atom 
circumference within the considered number of coordination 
shells; 
rmn is the interatomic distance proportional to the lattice 
constant a of the alloy. 
The equilibrium value a0 of the lattice constant is determined 
from the minimum condition of the function Ualloy 
approximating the internal energy of the alloy by a parabola: 

                                                                       (15) 

The cohesive energy of the alloy Ecohesivewas taken as the value of 
its internal energy found for the equilibrium lattice constant: 

.                                        (16) 

The values of the cohesive energy of binary alloys found from 
(16) were compared with a value H that could fairly be named 
the “proper contribution” to the cohesive energy. 

,                         (17) 

where  and  are the numbers of atoms of the class  and  
in the structural unit of the element. 
The experimental value of the cohesive energy differs from  
by the value of the heat of mixture : 

    (18)  
The values of lattice constants, cohesive energies, and the 
corresponding observed values [Hansen 1962, Elliot 1970, 
Gorelik 1970] of alloys ordered into superstructures , , 

,, are calculated in accordance with the described algorithm, 

and shown in Table 2. Due to the parabolic approximation of 
the internal energy there is some arbitrariness for the 
calculated values ,  presented in Table 2. In fact, these 

numbers depend not only on the type of function , but also 

on the initial value  and the stride parameter  (Figure 3). 

During the calculation, the value was set as an integer 

number of angstroms, the closest to the observed value. Trial 
step  was . 

Table 2 shows that in alloys with a superstructure , the 

calculated values of the lattice constants are less than the 
observed values. Exceptions are the alloys  and , for 

which constants  almost coincide with the experimental 

value. For some alloys ( , , ), the decrease is quite 

significant (up to 25% in ). This is explained by the 

difference in the parameters of the atomic shells of the 
components ( ,  and , ) and, as a result, by the large 

number of singularities in the graph . In alloys with 

superstructures ,  deviations  from can be either 

positive or negative. 

The expected values of the cohesive energies of alloys should 
be greater by modulus than the value  given in Table 2, due to 

the formation of a stable compound and the heat of mixing 
emission. However, this inequality does not hold in most cases. 
So, in the superstructure  it is valid only for alloys ,  

and . However, the differences between  and  in 

these alloys are insignificant. In superstructures , the  

“right” proportion between these values is observed for about 
half of the alloys. 
Thuswise, within the framework of the developed concept 
based on the action of Coulomb forces only, both at the stage 
of constructing electronic distributions in atoms and at the 
stage of their application, and assuming that the electronic 
shells of atoms are given in the form of thin spheres, the 
parameters of the corresponding electronic distributions are 
determined. 

Table 2. Equilibrium calculated and observed characteristics of some 
binary alloys with superstructures B2, D03, L12 

Superstructure Alloy a0(Å) calculated a0(Å) 
observed 

 Ecohesice, Ev 

Calculation 

H, Ev 

B2 AgCe 3.718 3.740 7.235 7.730 

AgLi 3.003 3.174 4.249 4.610 

AgPr 3.458 3.735-
3.739 

6.551 6.860 

AlFe 2.987 2.900 7.448 7.630 

AlIr 2.925 2.977 9.864 10.270 

AlNi 2.809 2.887 7.201 7.775 

AlPd 3.096 3.030 7.286 7.276 

AlPr 3.514 3.820 6.998 7.240 

AlRh 2.933 2.990 8.751 9.092 

AuCs 3.360 4.263 3.677 4.607 

AuPr 3.386 3.680 7.118 7.680 

CuPd 2.883 2.994 7.489 7.436 

FeRh 2.915 2.987 10.043 10.042 

NaAl 3.037 3.730 4.505 4.470 

D03  5.843 5.900 13.500 13.840 

 6.032 5.780 15.823 16.210 

  4.932 4.985-

5.013 

14.884 17.650 

 3.975 3.560 15.123 16.645 

 5.453 4.950-
5.007 

14.295 15.040 

L13  4.374 3.876 19.981 20.896 

 3.821 3.650 15.927 14.436 

 3.797 3.750 15.283 14.280 

 3.809 3.68 17.566 16.352 

 3.899 3.848-
3.851 

16.298 16.098 

 3.822 3.861-
3.889 

29.383 28.879 

 3.897 3.812 3.812 26.090 

 3.815 3.865 31.309 24.726 

 3.892 3.870 21.898 22.856 

 3.869 3.890 18.343 18.906 

 3.938 3.900 21.477 21.256 

 4.034 3.860 25.794 25.345 

 3.829 4.139 24.094 23.182 
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Potentials describing the interaction of various types of atoms 
have been constructed, the most important characteristics of 
metal crystals and binary alloys have been calculated, and a 
comparison has been made with the available observed data.  
It is also worthy of note that in general, due to the piecewise 
smoothness of the constructed interatomic potentials and the 
lattice constant dependence of the internal energy, the 
proposed model fails to describe the properties of metals and 
alloys well adequately, and the proposed model requires 
further refinement. Nevertheless, the calculations show that 
the necessary conditions for the stability of the crystal lattice 
can be met if the electron density of the outermost shells is 
represented as a function, “blurred” near the surface of a 
sphere of a certain radius R1. 

4 CONCLUSIONS 

To enable an adequate description of the physicochemical 
processes involved in the formation of bimetals, a method for 
determining the interaction potentials between different types 
of atoms included in a particular test compound has been 
proposed. The method is based on the electrostatic nature of 
the interaction between the outermost electron shells of 
atoms. The effect of other factors is seen as insignificant. 
Comparing the experimental values of the crystal lattice size 
and binding energy of single and binary compounds with the 
calculated ones led to the conclusion that they correspond in 
the presence of certain deviations that are systemic in nature, 
which indicates the need for further improvement of the 
proposed model. Based on this, the conclusion about the 
principal possibility of using the proposed model interaction 
potential in the study of interatomic kinetics of bimetals has 
been drawn. 
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