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The possibilities of simulation of technological process of 
aluminium anodic oxidation using the methodology of Design of 
Experiments (DOE) and theory of neural networks in order to 
monitor the anodizing process under various operating 
conditions are presented in this paper. The influence of 
chemical and physical input factors on the resulting AAO 
(anodic aluminium oxide) layer thickness at applied current 
density of 1 A∙dm-2 and 6 A∙dm-2 has been investigated. Based 
on the evaluation of experimentally obtained data, the 
computational predictive model describing the effect of 
individual input factors and their mutual interactions on the 
AAO layer thickness was developed in the form of cubic 
function. This model indicates which factors are important and 
how they combine to influence the response, it will enable us 
to optimize operating conditions. The most significant benefit 
of our research work in this field is the fact that all relevant 
factors were varied simultaneously. 
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1 INTRODUCTION 

Aluminum and its alloys are common materials for 
manufacturing due to its properties (low density, high 
mechanical strength, good conductivity, corrosion and wear 
resistance, etc.). It is commonly used in the aerospace and 
automotive industries, for building materials, domestic 
products, packaging and electrical applications [Baumeister 
1997, Dobrzanski 2005]. Anodic aluminium oxide (AAO) 
coatings have recently attracted the scientists’ attention 
because of their usefulness and wide range of applications 
[Rahimi 2009]. Anodizing is one of the most important 
processes in corrosion protection and colour finishes for 
aluminium [Tsangaraki-Kaplanogloua 2006 a], it is an effective 
process applied to produce decorative and protective films on 
articles made from aluminium [Djozan 2003]. During the 
process of aluminium anodic oxidation different type of the 
electrolyte are used, the most frequently used are sulphuric 
acid and oxalic acid, alternatively a combination of them, 
because of their environmental friendliness [Badida 2013]. The 
mechanism of an oxide layer formation when using sulphuric 
acid solution has been observed in many studies, for example in 
[Tsangaraki-Kaplanogloua 2006 b, Patermarakis 1998, Aerts 

2009] researchers were focused to design a mathematical 
model of local turbulences in the electrolyte and examine their 
influence on the geometrical dimensions of the pores. Other 
studies were also dealing with the temperature effect on the 
growth of the oxide layer [Aerts 2010] and the layer porosity 
[Aerts 2007] of 99.50 % aluminium using the electrolyte 
comprising sulphuric acid based on which it followed that the 
structure of the layer, the layer porosity, its thickness and 
hardness are not so much under the influence of the 
temperature of the electrolyte compared to that of the 
electrode. 
Despite the information available in literature on the influence 
of the operating conditions (input factors) on the response (the 
thickness of the formed oxide layer), studies which consider all 
relevant factors at a time are rare. The usage of DOE 
methodology to construct a carefully prepared set of 
experiments is one of the basic tools which helps us to show 
the influence of input variables (varied simultaneously) on 
outputs (responses) [Gombar 2014, Box 2008]. The optimum 
selection of process conditions is an extremely important issue 
as these determine surface quality of the manufactured 
components [Gombar 2014]. The mathematical modelling of 
the anodizing process involves several parameters that may 
lead to difficult analytical solution [Box 2008] On the other 
hand, the usage of artificial intelligence for evaluation of 
experimental results has its merits. Mainly because of one 
obtains more useful and more precise information about the 
studied system, the predictive model of the studied process will 
be more reliable and can be developed faster in comparison 
with usage only classical statistical methods [Panda 2016, 
Hrehova 2013]. Also it is possible to achieve maximum output 
or minimum input or both by usage appropriate type of neural 
unit order and learning algorithm [Bukovsky 2013]. 

2 EXPERIMENTAL 

Specimens of aluminium alloys EN AW 1050 - H24 with 
dimensions 101 x 70 x 1 mm were used. The specimens had 
undergone the following pre-treatments: degreasing in a 38 % 
solution of NaOH at 55 to 60 oC for 2 minutes and etching in a 
40 % solution of NaOH at the temperature 45 – 50 oC for 
0.50 min. Consequently, the specimens were immersed for 
1 minute in a nitric acid bath (4 % HNO3) at the temperature 18 
to 24 oC. Between each operation, the samples were rinsed 
thoroughly in deionized water. The anodizing process was 
carried out in the electrolyte containing sulphuric acid, oxalic 
acid, boric acid and sodium chloride. Their concentrations were 
determined according to the DOE using a central composite 
design for seven input factors and four levels of each, the 
center of the experimental region have been added. The 
operating conditions (electrolyte temperature, anodizing time 
and applied voltage) also were determined on the basis of 
central composite design. The actual design matrix of 
experiment was created, individual test runs were performed 
on the basis of this design matrix created as a combination of 
individual levels of seven investigated factors. Table 1 shows 
the individual levels of investigated factors in coded scale and 
natural one. Coded scale is used to prevent influence of the 
absolute term of the studied factor in evaluating the results of 
the experiment. By means of DOE, individual runs were 
performed in random order to eliminate systematic error and 
to avoid subjective preference of any factor-level. Use scalar 
products the orthogonality of experiment design were verified. 
The thickness of the resulting AAO layer was measured in the 
defined experimental points by usage of digital thickness 
meter. Experimental points were indicated at the intersections 
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of horizontal and vertical lines, distance between individual 
lines and from the bottom edge of the sample was 5 mm. The 
layer thickness was measured five times at each experimental 
point. The arithmetic average of five measurements was taken 
as an individual measurement. 

Coded 
scale 

Natural scale 
Factor level 

-2.83 -1 0 1 2.83 

x1 H2SO4[g∙l-1] 12.57 40.00 55.00 70.00 97.43 

x2 C2H2O4 [g∙l-1] 3.76 6.50 8.00 9.50 12.24 

x3 H3BO3 [g∙l-1] 4.51 10.00 13.00 16.00 21.49 

x4 NaCl [g∙l-1] 0.12 0.30 0.40 0.50 0.68 

x5 T [°C] -5.46 11.00 20.00 29.00 45.46 

x6 U [V] 2.34 6.00 8.00 10.00 13.66 

x7 t [min] 1.72 20.00 30.00 40.00 58.28 

Table 1. Levels of observed factors 

3 METHODS OF DATA EVALUATION 

Experimentally obtained data were evaluated by methods of 
statistical analysis and methods of artificial intelligence. The 
multiple linear regression (MLR) and theory of neural units, 
especially Levenberg-Marquardt (LM) algorithm, were applied 
to the modelling of effects of observed input factors on the 
response in order to obtain the computational predictive 
model. Before applying regression analyse on the 
experimentally obtained data, the DOE standardization (coding) 
of input factors into coded unit was performed to obtain 
correct statistical significance of regression coefficients 
[Hrehova 2013a, Erikson 2008, Gombar 2014, Box 2008]. Based 
on the statistical analysis of experimentally obtained data 
(screening analysis, analysis of variance ANOVA, DOE analysis) 
using software such as Matlab, Statistica, QC-Expert [Krenicky 
2011, Hrehova 2013b, Murcinkova 2013], we have indicated 
important factors affecting the final layer thickness, we 
analysed how they interact and obtained computational 
statistical models predicting the value of thickness. Levenberg-
Marquardt (LM) algorithm is described by equation (1) – 
equation (8). It is a process of updating individual weights w  in 

a predetermined number of steps to achieve a minimum 
difference between the real (measured) and calculated values 
[Gupta 2012]. The vector u of neural inputs is created by taking 
the partial derivatives of each output in respect to each weight 
equation (1) – equation (3). The equation describing the 
investigated model is the characteristic equation of given type 

of neural unit for observed factors 
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The Levenberg-Marquardt algorithm consists in solving equation 

(4), where the Jacobian J  is the matrix of dimension nm , 

where n  is the length of the input vector u of the neural unit 

( n  is the number of neural inputs) and m  is the total number 

of parameters intended for the learning procedure. The vector 
of neural inputs as well as the Jacobian is defined in the first 
step of the learning procedure and they remain constant in all 
subsequent steps of learning. 
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The vector y  of neural outputs is defined as the vector 

product of vectors w  and u  (equation (5)): 

uwy ´  (5) 

The size of the individual weight is set in the first step 
randomly. After calculating the output vector the error vector 
e  is calculated as the difference between the actual value y  of 

the observed variable and the calculated one by the neural 

units y  (equation (6)): 

y´ye   (6) 

Then the weight update vector w  is determined by 

equation (7). In equation (7) there is the weight update vector 

w  that we want to find, e  is the error vector containing the 

output errors for each input vector used on training the 

network, 1  is the Leveberg’s damping factor which tells us 

how much we should change our network weights to achieve a 

(possibly) better solution. The JJ
T   matrix can also be known 

as the approximated Hessian, the I is an identity matrix of 
diagonal length equal to the number of neural weights (matrix 
of dimension nn ), and   is the learning rate. The size of the 

learning rate   depends on how quickly and how accurately 

the neural unit is able to learn. At higher values of learning rate 
the neural unit will learn faster but there is a risk of instability 
respectively a risk of model oscillation. At lower values of 
learning rate the calculation is more accurate but the learning 
process requires a larger number of iterations [Bukovsky 2013]. 
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After calculating the weight-updates equation (8), the 

adaptation of the weights of input factors 
nw  occurs. Vector of 

weights update w  is sum up to actual vector of weight
1nw , 

where n  is number of actual iterations. This is the end of 

iteration loop for the learning process of neural unit using 
iterative Levenberg-Marquardt algorithm optimization. The 
learning process of neural units continues by calculating the 
vector of neural outputs y  using the new (adapted) weights. 

Δwww  1nn
 (8) 

4 RESULTS AND DISCUSSION 

When the learning process of neuron unit was done, we 
obtained a computational model in the form of equation (9) 
and equation (10), which is describing and predicting the final 
thickness of AAO layer formed during anodizing process at 
surface current density of 1 A∙dm-2. The thickness of AAO layer 
formed during anodizing process at surface current density of 
6 A∙dm-2 is expressed by equation (11) and equation (12). 
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Where th  is the final thickness of oxide layer,   is preliminary 

thickness of oxide layer, 
iu  is a combination of input factors 

levels (in coded scale) and 
1Jw  and 

6Jw  are weights of 

combinations of their respective input factors. Calculated 
thickness of oxide layer is expressed in mm∙10-3. 

We have chosen 36 randomly measured values of the final 
thickness and used them to develop predictive models of AAO 
layer thickness formed at applied current density of 1 A∙dm-2. 
Figure 1 shows results of training process as comparison of 
measured and predicted thicknesses of AAO layer at current 
density of 1 A∙dm-2. We can see that all values are situated 
closely to straight line of ideal prediction (error free prediction). 
It means that neural units were able to develop training models 
with high precision. 

 

Figure 1. Results of training process for current density of 1 A∙dm-2 

We have used remaining 44 measured values to validate the 
prediction model of AAO layer thickness for current density of 
1 A∙dm-2. Figure 2 shows the results of validation as comparison 
of measured and predicted thicknesses of AAO layer formed at 
current density of 1 A∙dm-2. 

 
Figure 2. Validation of model reliability for current density of 1 A∙dm-2 

It can be seen that values not used during training process 
(purple squares) are usually approaching to measured values 
(blue triangles). All of predicted values are situated close to 
corresponding measured values. It means that the prediction 
model is not error free but it is enough reliable to predict 
untrained values. 

Process of validation continues with validation of accuracy of 
prediction model. Other 44 samples with different electrolyte 
composition and with different operating conditions were 
anodized. For these 44 samples the layer thickness by 
developed predictive model was calculated. Figure 3 shows the 
differences between the measured and predicted values. It can 
be seen that the error of predicted layer thickness is up to 
± 1 µm. This error is presented only six times. In other thirty 
eight cases the error of prediction is up to ± 0.5 µm. This means 
that developed predictive model is reliable with high accuracy 
and it is possible to use it to monitor the relationship between 
operating parameters and created layer thickness of aluminium 
oxide. 

 

Figure 3. Validation of model accuracy for current density 1 A∙dm-2 

If we obtain the model which describes the examined process 
we are able to monitor the influence of input factors on 
resulting layer thickness of aluminium oxide. 

Figures 4, Figure 5, Figure 6 and Figure 7 show the influence of 
input factors on AAO layer thickness formed during anodizing 
process at current densities of 1 A∙dm-2. 

Figure 4 shows the influence of concentration of sulphuric acid 
in electrolyte on the resulting layer thickness along different 
concentration of sodium chloride in electrolyte. Concentration 
of oxalic acid is 8 g∙l-1, concentration of boric acid is 13 g∙l-1, 
electrolyte temperature is 20 oC, applied voltage is 8 V and 
anodizing time is 30 min.  

 

Figure 4. Influence of H2SO4 cross NaCl on the layer thickness at current 

density of 1 A∙dm-2 
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Figure 5 shows the influence of concentration of oxalic acid in 
electrolyte on the resulting layer thickness along different 
concentration of boric acid in electrolyte. Concentration of 
sulphuric acid is 55 g∙l-1, concentration of sodium chloride is 
0.4 g∙l-1, electrolyte temperature is 20 oC, applied voltage is 8 V 
and anodizing time is 30 min.  

 

 

Figure 5. Influence of C2H2O4 cross H3BO3 on the layer thickness at 
current density of 1 A∙dm-2 

Figure 6 shows the influence of electrolyte temperature on 
resulting layer thickness along different concentration of boric 
acid in electrolyte. Concentration of sulphuric acid is 55 g∙l-1, 
concentration of oxalic acid is 8 g∙l-1, concentration of sodium 
chloride is 0,4 g∙l-1, applied voltage is 8 V and anodizing time is 
30 min.  

 

 

Figure 6. Influence of T cross H3BO3 on the layer thickness at current 
density of 1 A∙dm-2 

Figure 7 shows the influence of applied voltage on resulting 
layer thickness along different concentration of sodium 
chloride in electrolyte. Concentration of sulphuric acid is  
55 g∙l-1, concentration of oxalic acid is 8 g∙l-1, concentration of 
boric acid is 13 g∙l-1 and anodizing time is 30 min. 

 

Figure 7. Influence of U cross NaCl on the layer thickness at current 
density of 1 A∙dm-2 

5 CONCLUSION 

In contrast to common experiments in this field of research of 
anodizing process, where is considered manipulating of only 
one factor at a time and its impact on the response, in our work 
we focused on the influence of all relevant factors and their 
interactions. The application of DOE is very useful for this 
purpose, whereby all such factors are manipulated 
simultaneously and fewer experiments are required. Also the 
application of neural networks theory is very important and 
useful for evaluation of experimental results to create a 
simulation model of technological process. Usage of higher 
order of neural unit based on the iterative Levenberg-
Marquardt optimization algorithm provides a wide range of 
options to describe the examined process and investigate the 
influence of input factors on AAO layer thickness. The 
simulation model with reliability of 99.37 % and accuracy up to 
± 1 µm for current density of 1 A∙dm-2 was obtained. Such a 
high reliability and accuracy offer possibilities for optimization 
of the examined technological processes. The usage of 
developed simulation model allows us to reduce the operating 
costs and simultaneously create desired value of AAO layer 
thickness. The results obtained by our experimental work have 
important benefits for technical practice, because they were 
practically verified under conditions of real production. 
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