TORQUE CHARACTERISTICS OF ROTARY PNEUMATIC MUSCLE ACTUATOR

Abstract

The control of the standard pneumatic muscle actuators is provided by increasing the air pressure in the one artificial muscle, while reducing the pressure in the second (antagonist) artificial muscle. The paper contains information about the control and basic properties of the rotary actuator based on pneumatic artificial muscles. It presents equations for the values of the actuator arm displacement depending on an input pressure; it shows the static characteristics of the actuator and the utilization of the muscle contraction. Pneumatic artificial muscles are connected in an antagonistic system through an oval centrally symmetric pulley. Due to the fact that with increasing rotating of actuator arm the torque decrease from the both artificial muscles; the stiffness of the actuator also decreasing in both directions. The proposed method of the present control in this paper has resulted in a small increase of torque of the rotary muscle actuator and thus adequate and symmetric stiffness of actuator.

Recommended articles

VARIANCES OF THE MECHANICAL PROPERTIES OF FILLED POLYMER MATERIALS IN A VARIATION OF INJECTION MOULDING INPUT PARAMETERS

VACLAV CONTOS
Keywords: fiber orientation | injection moulding | rheology | structural analysis | FEM | mesh

THE DEFORMATION BEHAVIOUR OF HYBRID COMPOSITE SYSTEMS WITH THERMOPLASTIC MATRIXITLE

PAVEL SEHNOUTEK, MARTIN SEIDL, LUBOS BEHALEK, JIRI HABR
Keywords: reinforced polymer s | hybrid composites | mechanical properties | glass fibres | glass spheres | carbon fibres