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The paper describes the concept of improving the efficiency of 
the process of diagnostics and monitoring of the technical 
condition of the electric drive on the basis of brushless direct 
current (BLDC) motors of robots and vehicles on the basis of 
analysing diagnostic information of different physical nature, 
taking into account different types of diagnostic signals formed 
by individual elements of the drive and measured by electric 
current and rotor speed sensors. The project realisation provides 
increase of efficiency of control of technical condition of motors 
of robots and electric transport, allows to pass from planned 
maintenance of motors to maintenance on actual condition, to 
increase safety of movement, and also to introduce systems of 
automatic monitoring. Functional purpose of the system: 
monitoring of technical condition of actuator due to the use of 
digital twin and analysis of signals of mismatch between it and 
the real actuator. The imitation model of actuator diagnostics is 
developed. 
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1 INTRODUCTION 

The purpose of the study is to determine the influence of defects 
in the brushless direct current (BLDC) motor on the parameters 
in the state matrix and changes in output parameters such as 
electric currents flowing through the motor phases and its 
rotational speed. This research is necessary for the development 
of program and hardware for diagnostics and monitoring 
systems. 
The methodology of the work is based on modern approaches in 
control theory, state-space representation of the motor and its 
digital twin, and simulation modelling. 
One of the main problems associated with the construction of 
electric drive is its sensitivity to changes in parameters during 
operation. First of all, it refers to changes in active and inductive 
resistances of the stator winding due to defects. Hence the 
relevance of the problem of identification of induction motor 
parameters in the process of its operation. 
A BLDC motor is a direct current motor that operates without 
brushes. Brushless motors are now more popular than DC 
collector motors because they have higher efficiency, can 
provide precise torque and speed control, and offer high 
durability and low electro-magnetic interference due to the 
absence of brushes. 

2 LITERATURE REVIEW  

With a significant number of scientific publications on 
identification of electric motor parameters [Turygin 2018, Nikitin 
2018, 2020a & 2022a, Kuric 2021, Jancarik 2019, Hartansky 2017 

& 2020, Peterka 2020, Bozek 2023] up to now there are no 
acceptable complex solutions that would allow to determine all 
the necessary values in real time during the operation of 
industrial plants. In addition, many solutions for parameter 
identification in modern electric drives constitute a trade secret. 
In general, identification means determination of the structure 
and parameters of the mathematical model of a dynamic object, 
which provide the best proximity of values of output quantities 
of the model and the object according to a given criterion of 
similarity at the same input influences [Lekomtsev 2021, 
Stepanov 2021]. 
Real time means that the rate of change of the current values of 
the quantities to be determined and the duration of the 
processes of their identification differ by the amount permissible 
for solving practical problems in the further use of the 
identification results (control, functional diagnostics or 
monitoring) [Bozek 2021a]. 
The most promising group of methods are passive methods 
based on registration and processing of easily available 
information about the motor in its operating mode [Chen 2020]. 
Under easily accessible information we will understand electric 
currents and rotor speed. A group of identification methods 
based on digital twin theory fulfils this requirement [Chen 2022].  
  The tuning mechanism may include various algorithms whose 
main goal is to find such a vector of parameters to minimise the 
mismatch between the outputs of the model and the control 
object. The quality index is often determined by a reference 
dynamic model of the control object [Chen 2019]. In the 
scientific literature, the theory of adaptive systems with a 
reference model is known as Model Reference Adaptive Control 
(MRAC) [Cheng 2021]. Alternatively, adaptive systems with a 
tunable model are considered, whose characteristics are first 
fitted to the dynamic characteristics of the object and then used 
to optimise the system [Ding 2019, Li 2022]. The process of 
fitting the model to the object is essentially an identification of 
the system, which results in the production of data for 
computing the optimal control in the next step [Lekomtsev 2020, 
Trefilov 2021]. The closeness of the model to the object is judged 
by the magnitude of the mismatch between the model output 
and the feedback signal of the real object. When the error 
becomes less than some specified value, the identification 
process ends and the process of tuning of the main loop 
controller for the purpose of optimisation starts automatically 
[Nikitin 2020b & 2022b,c, Zajac 2020, Bozek 2021b, Kuric 2022, 
Cheng 2023]. 
The tuning mechanism can include various algorithms, the main 
goal of which is to find such a vector of parameters to minimise 
the mismatch between the outputs of the model and the control 
object. The calculation of parameters by these algorithms is a 
rather complex mathematical problem. In addition, the 
information received in the system is often insufficient to 
immediately find new values of the required parameters. In this 
case, in order to solve the problem, it is necessary to accumulate 
information in the process of work. 
One of the possible methods of parameter calculation is 
application of the extended Kalman filter. There are many 
modifications of such filters, and one can always choose an 
appropriate filter for a particular problem. The Kalman filter is a 
recursive linear optimal algorithm for processing measurement 
information and is used to obtain estimates of the parameters of 
a dynamic object under the influence of random noise. The 
algorithm allows efficient estimation of parameters and state 
variables of the object, including those that cannot be measured 
directly. The disadvantage of the filter is the need for preliminary 
adjustment, which consists in determining the covariance 
matrices of the object state noise and noise of the measurement 
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system, which may change with time, and their automatic 
correction during the operation of the motor may be difficult or 
impossible. 
When attempting to add stator inductances to the state vector, 
the estimation process becomes unstable using the extended 
Kalman filter. This is explained by the fact that the extended 
Kalman filter is, in fact, a gradient method and gives a strict 
solution only for linear objects, and when applied to nonlinear 
objects, which include motors, it is possible not only to hit a local 
extremum with inaccurate estimates, but also the emergence of 
an unstable estimation process. 
Another frequently used method of parameter estimation is the 
recurrent least squares method, which solves the problem of 
parameter estimation with minimisation of the mean-square 
error. The advantages of the method include the fact that the 
method does not require any a priori information. The 
disadvantages are that the object model should be described by 
algebraic equations with sufficient accuracy. There are known 
works that use a combination of Kalman filter and recurrent least 
squares method for simultaneous state identification and 
parameter adjustment. 
Other algorithms for parameter search are also possible. There 
are works in which artificial neural networks, genetic algorithms, 
etc. are used. 
As a rule, all these methods use the assumption that in the 
process of identification of one parameter, the others do not 
change. However, there are known works that show 
simultaneous identification of several parameters (e.g., 
simultaneous identification of stator resistances based on an 
adaptive observer). 
Thus, the most promising at this point in time seems to be the 
approach to identification of motor parameters during operation 
on the basis of passive methods, since their application does not 
require any means other than software. It should be noted only 
that in this case simultaneous calculation of rotor active 
resistance and speed is impossible in static mode of operation - 
this is due to the degeneracy of the Jacobian of the 
corresponding system of algebraic equations for static mode of 
operation. At the same time, there is no such limitation for the 
dynamic mode.  

3 RESEARCH METHODOLOGY 

The purpose of the study is to determine the influence of defects 
in the BLDC motor on the parameters in the state matrix and 
changes in output parameters such as electric currents flowing 
through the motor phases and its rotational speed. This research 
is necessary for the development of program and hardware for 
diagnostics and monitoring systems. 
The methodology of the work is based on modern approaches in 
control theory, state-space representation of the motor and its 
digital twin, and simulation modelling. 
The BLDC motors is one of the most widely used types of electric 
motors due to its high efficiency, reliability and ability to 
accurately control the rotational speed. However, effective 
control of these motors requires the development of accurate 
mathematical models that account for the various nonlinear 
effects that occur during their operation. 
1 Nonlinearity and discretisation 
Various nonlinear effects occur during the operation of BLDC 
motors, such as saturation of the magnetic core, changes in 
inductance and winding resistance with temperature changes, 
and the influence of external factors such as load and ambient 
temperature. These factors make the task of creating an 
accurate model challenging and require nonlinearities to be 
taken into account. 

In addition, modern motor control systems operate in digital 
mode, which requires the conversion of continuous models into 
discrete models. The discretisation process allows digital 
controllers to be used for motor control, providing high accuracy 
and stability. 

3.1 Methods for building nonlinear discrete models 

There are several methods of constructing nonlinear discrete 
models, each of which has its own peculiarities and area of 
application. Let us consider some of them. 

3.1.1 Traditional methods 

Finite difference method is used to approximate the derivatives 
of functions through difference relations. This method is simple 
to implement and can be applied to a wide range of problems. 
However, it has limited accuracy and sensitivity to noise. 
Numerical methods for solving differential equations such as the 
Runge-Kutta method, allow the solution of complex differential 
equations describing engine performance. They provide high 
accuracy but can be computationally demanding. 

3.1.2 State-of-the-art methods 

Neural networks are a powerful tool for modelling nonlinear 
processes. They are capable of learning from experimental data 
and adapting to changes in operating conditions. The application 
of neural networks allows the creation of highly accurate models 
that can account for even the most complex nonlinear 
dependencies. 
Genetic algorithms are used to find the optimal set of model 
parameters by simulating the process of natural selection. This 
allows finding the best model parameters without the need for 
a large number of experiments. 

3.1.3 Parameter identification 

Identification of model parameters is an important stage of its 
development. Various methods such as least squares method, 
maximum likelihood method and others are used for this 
purpose. Experimental data play a key role in this process, as 
they allow you to check the accuracy of the model and adjust its 
parameters. 
Let us consider several examples of successful implementation 
of nonlinear discrete models for controlling the BLDC motors. 
For example, one project developed a model that uses neural 
networks to predict the behaviour of the motor under different 
loads. This model has significantly improved control quality and 
reduced power consumption. 
However, it is worth noting that the development of such models 
involves certain difficulties, such as the complexity of parameter 
tuning and the high demand on computational resources. 
When developing BLDC motors mathematical models, it is 
necessary to take into account such phenomena as the 
saturation of the magnetic core and nonlinear effects arising 
from the peculiarities of the motor design and its mode of 
operation. Let us take a closer look at how these factors are 
taken into account in BLDC motors models. 
The saturation of the magnetic core occurs when the increase in 
magnetic flux in the core ceases to depend linearly on the 
applied field current. This phenomenon is related to the physical 
properties of the materials used in the magnetic core and 
manifests itself as a decrease in the inductance of the motor 
windings as the current increases. 
To account for the saturation effect in the BLDC model, the 
following approaches are used: 

1. Using piecewise linear functions: The motor inductance is 
represented as a piecewise function depending on the current. 
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For example, at low currents, the inductance is assumed to be 
constant, but when a certain threshold is reached, it starts 
decreasing as the current increases. 
2. Modelling using magnetisation curves: To account for 
saturation more accurately, an experimentally obtained 
magnetisation curve of the magnetic core material is used.  
3. Numerical modelling methods: In some cases, especially when 
spatial effects and magnetic field distribution need to be taken 
into account, the finite element method (FEM) is used. This 
method allows detailed modelling of the magnetic field 
distribution in the motor and accurate determination of the 
saturation moments. 

Nonlinear effects in BLDC motors arise due to many factors such 
as: 
- Rotor position dependence of inductance: The inductance of 
the windings varies with the angular position of the rotor relative 
to the stator. This is because the air gap between rotor and 
stator changes during rotation. 
- Hysteresis and eddy current losses: Hysteresis in magnetic 
materials causes additional power losses and distorts the shape 
of the magnetic field. Eddy current losses also contribute to the 
nonlinearity of the model. 
- Temperature variations: Temperature affects the winding 
resistance and magnetic properties of the materials, which also 
leads to changes in the motor parameters. 

The following methods are used to account for these nonlinear 
effects: 
1. Parametric identification: Model parameters such as 
inductance and resistance are determined by experimentation 
and then selecting values that provide the best fit to the real 
data. 
2. Least Squares Method: It is used to minimise the difference 
between the calculated and measured parameters. This method 
allows adaptive modification of the model parameters 
depending on the current engine operating conditions. 
3. Neural Networks and Machine Learning: Modern machine 
learning techniques such as artificial neural networks can be 
used to build non-linear models that can account for complex 
relationships between different factors. 
4. Fuzzing and robust control: In case of parameter uncertainty 
or varying operating conditions, fuzzing and robust control 
methods are used to develop change-resistant motor control 
systems. 

A variety of state-of-the-art methods are used to model BLDC 
motors, each with its own advantages and features. Let us 
consider some of them: 

1. Finite Element Method (FEM) 
It is one of the most powerful tools for modelling 
electromagnetic fields in complex geometries. The FEM method 
breaks the motor into many small elements and solves Maxwell's 
equations for each element, which gives an accurate 
representation of the magnetic field distribution, current density 
and other parameters. 
Advantages: 
- High modelling accuracy. 
- Ability to account for complex geometry and inhomogeneous 
materials. 
- Suitable for analysing saturation and nonlinear effects. 
Disadvantages: 
- High demands on computational resources. 
- Difficulty in setting up and analysing results. 

2. Equivalent Circuit Modelling 
This method is based on representing the motor as an electrical 
circuit consisting of resistors, inductors and voltage sources. 

Equivalent circuits allow the dynamic behaviour of the motor to 
be simulated quickly and efficiently without the need for 
detailed electromagnetic fields. 
Advantages: 
- Easy to implement and understand. 
- Low computational complexity. 
- Good for rapid transient analyses. 
Disadvantages: 
- Lower accuracy compared to the FEM method. 
- Difficulties in accounting for nonlinear effects and spatial 
inhomogeneity. 

3. Multiscale Modelling 
This approach combines different levels of detail for different 
parts of the model. For example, you can use the FEM method 
to model the magnetic circuit and then go to equivalent circuits 
to describe the electrical part of the motor. 
Advantages: 
- Optimal combination of accuracy and computational 
complexity. 
- Allows focus on critical aspects of the model. 
Disadvantages: 
- Requires coordination between different modelling methods. 
- Can be difficult to set up and interpret results. 

4. Machine Learning and Neural Networks (Machine Learning 
and Neural Networks) 
Modern machine learning techniques such as deep neural 
networks can be used to create models that can predict motor 
behaviour based on measured data. Neural networks are trained 
on large amounts of data and can capture complex non-linear 
dependencies. 
Advantages: 
- Ability to capture complex nonlinear interactions. 
- High speed of performance after training. 
- Flexibility to adapt to new environments. 
Disadvantages: 
- Need for large amount of data for training. 
- Possible need for regular calibration and updating of the model. 
- Limited understanding of the internal workings of the model. 

5. Robust Modelling 
This method takes into account uncertainties in the model 
parameters and seeks to minimise the impact of these 
uncertainties on the result. Robust modelling is often used in 
combination with other methods to produce robust and robust 
models. 
Benefits: 
- Robustness to parameter variations. 
- Reliability of results under uncertainty. 
Disadvantages: 
- More difficult to set up and analyse. 
- Possible decrease in accuracy compared to deterministic 
models. 

6. Methods based on Chaos Theory and Fractal Geometry (Chaos 
Theory and Fractal Geometry) 
These methods can be used to analyse complex dynamic systems 
such as engines with variable load or operating under extreme 
conditions. Chaos Theory and Fractal Geometry help to reveal 
hidden patterns and structures in the behaviour of the system. 
Benefits: 
- ability to identify hidden patterns; 
- useful for analysing unstable and irregular processes. 
Disadvantages: 
- complexity of the theoretical framework. 
The mathematical basis of vector control of the drive is 
differential equations that describe the drive equally correctly 
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both in dynamics and statics. Due to the adequacy of control in 
dynamics, vector control, unlike scalar control, makes it possible 
to build highly dynamic and precision AC drives that provide the 
highest accuracy and speed of regulation. In addition, vector 
control uses the representation of three-phase quantities in the 
form of generalised vectors and control systems are built in 
rotating coordinates. 
To solve the identification problem, a dynamic model of the 
BLDC motor in a rotating coordinate system (d, q) oriented along 
the magnetic axis of the rotor is often used. On the basis of 
Kirchhoff's 2nd law, an equation describing the electrical part of 
the BLDC motor in the coordinate system d, q, rotating with rotor 
speed ω: 

𝑢𝑠̅̅ ̅ =  𝑖𝑠̅𝑅𝑠 + 𝐿𝑠
𝑑𝑖𝑠̅

𝑑𝑡
+ 𝑗𝜔𝐿𝑠𝑖𝑠̅ + 𝑗𝜔Ф0

̅̅ ̅̅ ,                    (1) 

where 𝑢𝑠̅̅ ̅ is resultant voltage vector on the stator winding;  
𝑅𝑠, 𝐿𝑠 are active resistance and total inductance of the stator 
phase; 

Ф0
̅̅ ̅̅  is flow vector of the BLDC motor. 

𝑑

𝑑𝑡
𝑖𝑑 =

1

𝐿𝑑
𝑉𝑑 −

𝑅

𝐿𝑑
𝑖𝑑 −

𝐿𝑞

𝐿𝑑
𝑝𝜔𝑖𝑞,               (2) 

𝑑

𝑑𝑡
𝑖𝑞 =

1

𝐿𝑞
𝑉𝑞 −

𝑅

𝐿𝑞
𝑖𝑞 +

𝐿𝑑

𝐿𝑞
𝑝𝜔𝑖𝑑 −

𝜓

𝐿𝑞
𝑝𝜔,      (3) 

𝑇𝑒 = 𝑝𝜓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑝𝑖𝑑𝑖𝑞,             (4) 

where Lq, Ld are stator inductances along the axes q and d; 
R is stator winding active resistance; 
iq, id are stator current axial projections q and d; 
Vq, Vd are stator voltage projections on the axes q and d; 
ω is rotor angular speed; 
ψ is magnetic flux induced by permanent magnets in the stator 
winding; 
p is number of pole pairs; 
Te is electromagnetic torque of the BLDC motor.  
Provided Lq=Ld 

𝑑

𝑑𝑡
𝑖𝑞 =

1

𝐿𝑞
𝑉𝑞 −

𝑅

𝐿𝑞
𝑖𝑞 + 𝑝𝜔𝑖𝑑 −

𝜓

𝐿𝑞
𝑝𝜔,            (5) 

𝑇𝑒 = 𝑝𝜓𝑖𝑞.                                    (6) 

The mechanical part of the BLDC motor model is described by 
the system of equations: 

𝑑

𝑑𝑡
𝜔 =

1

𝐽
(𝑇𝑒 − 𝐹𝜔 − 𝑇𝐿).                             (7) 

This model has the disadvantage that the stator winding is 
considered as a whole, while in practice defects in the form of 
inter-turn faults can occur in any of the three phases of the BDPT 
stator winding. Therefore, it is reasonable to consider a model 
with separate equations for each phase. Fig. 1 shows a BLDC 
motor with one pair of poles. 

 

Figure 1. Single pole pair BLDC motor in cross section 

Three windings (A,B,C) are wound on the motor stator, offset in 
space by 120⁰. Each winding consists of two sections switched 
on counterclockwise. Thus, when current flows in the winding, it 
creates two poles (positive and negative) inside the motor to 

which the magnetic rotor is attracted. This winding design is 
called a centred winding. It is usually characterised by a 
trapezoidal EMF shape. 
In the further consideration we will consider as zero the angular 
position of the rotor (θR), at which the rotor flux vector coincides 
in direction with the phase A axis (axis of winding A). The 
equations of equilibrium of stator windings of BLDC motor at its 
inclusion in "star" in fixed phase coordinates ABC have the 
following form: 

𝑈𝐴 =
𝑑𝜓𝐴

𝑑𝑡
+ 𝐼𝐴𝑅𝐴,                                         (8) 

𝑈𝐵 =
𝑑𝜓𝐵

𝑑𝑡
+ 𝐼𝐵𝑅𝐵,                                        (9) 

𝑈𝐶 =
𝑑𝜓𝐶

𝑑𝑡
+ 𝐼𝐶𝑅𝐶,                                      (10) 

where 𝑈𝐴, 𝑈𝐵, 𝑈C are phase voltages, 𝜓𝐴, 𝜓𝐵, 𝜓𝐶  are flux in the 
winding, 𝐼𝐴,  𝐼𝐵, 𝐼C are phase currents, 𝑅𝐴,  𝑅𝐵, 𝑅C are the active 
resistance of the phase winding. 

The flux in the winding of each phase is formed from the 
following components: 
- flux induced by the own current of the phase; 
- flux induced by magnetic fields of other phase windings; 
- flux induced in the winding by the rotor magnets. 
As shown by the system of equations: 

𝜓𝐴 = 𝐿𝐴𝐼𝐴 + 𝐿𝐴𝐵𝐼𝐵 + 𝐿𝐴𝐶𝐼𝐶 + 𝜓𝑓𝐴,                            (11) 

𝜓𝐵 = 𝐿𝐵𝐼𝐵 + 𝐿𝐵𝐶𝐼𝐶 + 𝐿𝐴𝐵𝐼𝐴 + 𝜓𝑓𝐵,                           (12) 

𝜓𝐶 = 𝐿𝐶𝐼𝐶 + 𝐿𝐴𝐶𝐼𝐴 + 𝐿𝐵𝐶𝐼𝐵 + 𝜓𝑓𝐶 ,                            (13) 

where LA, LB, LC are phase winding inductance, LAB, LBC, LAC are 
phase winding inductance phase winding inductance, ψA, ψB, ψC 
are currents induced in the windings by the rotor magnet. 
The BLDC motor model is represented in the well-known state-
space form as a system of equations. The presented a BLDC 
motor model is significantly nonlinear due to the presence of 
variable load torque. Therefore, the solution will be sought in the 
form of a discrete equation with a varying state matrix in the 
form of a vector-matrix equation in the state space. 
Designations of phase currents id , iq changed to 𝐼𝑑, 𝐼𝑞. 
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[
 
 
 
𝐼𝑑̂
𝐼𝑞̂
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1 0
0 1

    
0 0
0 0

0 0
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𝐼𝑑
𝐼𝑞
𝜔
𝜃
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𝜉𝐼𝑑

𝜉𝐼𝑞

𝜉𝜔

𝜉𝜃 ]
 
 
 
 

,                       (15) 

where [𝜉𝐼𝑑𝜉𝐼𝑞𝜉𝜔𝜉𝜃]𝑇 is measurement error vector; 

[𝐼𝑑̂𝐼𝑞̂𝜔̂ 𝜃]𝑻 is measured state vector. 

𝑇(𝑘) = 𝜀(𝑘)𝐽 + 𝑇𝐿 =
𝜔(𝑘+1)−𝜔̂(𝑘)

𝑇
𝐽 + 𝑇𝐿,        (16) 
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𝜔̂(𝑘) =
𝜃̂(𝑘)−𝜃̂(𝑘−1)

𝑇
,                                   (17) 

where 𝑇(𝑘) is motor torque, 𝑇𝐿 is load torque, 𝜀(𝑘) is angular 
acceleration, 𝜔 is angular velocity, θ is angular displacement, J is 
equivalent moment of inertia. 
Rotation frequency 𝜔(𝑘 + 1) denotes the target point on the 
trajectory, which allows us to calculate the required torque at 
each control step, which we substitute into the state matrix. 
We investigate the determinant of the square matrix 

(А𝑟
𝑇)𝑛−1𝐶𝑘

𝑇, at n=4, as having the greatest influence on the 
closeness of the moment of loss of identifiability. We will also 
investigate the technical feasibility of the control in terms of the 
maximum allowable currents and voltages of the BLDC motor, 
respectively we can determine the control current on 𝑘 step: 

|Is| = 𝐼𝑞(𝑘) =
2𝑀(𝑘)

3𝑝𝜓𝑓
=

2𝜔(𝑘+1)−𝜔̂(𝑘)

3𝑝𝑇𝜓𝑓
,           (18) 

U𝑠 = 𝑈𝑞(𝑘)𝑒−𝑗𝛼 = 𝑈𝑞(𝑘)𝑒
−𝑗

𝐿𝑠𝐼𝑞𝜔(𝑘)

−𝐸+𝐼𝑞𝑅𝑠 = 

= (−𝜓𝑓𝜔(𝑘) + 𝐼𝑞𝑅𝑠)𝑒
−𝑗

𝐿𝑠𝐼𝑞𝜔(𝑘)

−𝜓𝑠𝜔(𝑘)+𝐼𝑞𝑅𝑠.             (19) 

 

Figure 2. A schematic of the parallel operation of the BLDC motor and 

the digital twin 

Modelling of the BLDC motor in SimInTech software has been 
carried out. The digital twin of the motor with frequency 
converter is represented as a model in the SimInTech dynamic 
modelling environment. Fig. 2 shows a schematic of the parallel 
operation of the BLDC motor and the digital twin to calculate the 
rotational velocity incoherence signal, the programme for 
calculating the elements of the state, control and measurement 
matrices of the BLDC motor parameters. 

 

Figure 3. The angular velocities of the BLDC motor in the absence of 
defects and the digital twin 

Fig. 3 shows the angular velocities of the BLDC motor in the 
absence of defects and the digital twin. It can be seen that they 
coincide completely. This fig. shows that when the BLDC motor 
is not defective, the angular velocity of the real BLDC motor is 
the same as that of the digital twin. 
Fig. 4 presents the angular velocities of the BLDC motor when 
phase A are short-circuited (RA_2=0) and digital double. It can 
be seen that the BLDC motor cannot operate, its speed 
fluctuates around zero. This fig. shows that when phase A is 
short-circuited (RA_2=0), the rotor angular velocity fluctuates 
around 18 rad/s. The BLDC motor does not fulfil its function. 

 

Figure 4. The angular velocities of the BLDC motor when phase A are 
short-circuited (RA_2=0) and digital double 

Fig. 5 shows the angular velocities of the BLDC motor at phase A 
breakage and digital twin. The rotational speeds differ by a factor 
of 1.5. This fig. shows that when phase A breakage occurs, the 
rotor angular velocity of the BLDC motor and the digital twin 
have different angular velocities. 

 

Figure 5. The angular velocities of the BLDC motor at phase A breakage 
and digital twin 

Fig. 6 shows the angular velocities of the BLDC motor at 
demagnetisation of the permanent magnets and the digital 
double. The rotational speeds differ by a factor of 2. This fig. 
shows that when BLDC motor at demagnetisation of the 
permanent magnets, the rotor angular velocity of the BLDC 
motor and the digital twin have different angular velocities. 

 

Figure 6. The angular velocities of the BLDC motor at demagnetisation of 
the permanent magnets and the digital twin (km1=0.95, km2=0.55) 
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Fig. 7 shows the electric current and angular velocity 
uncertainties of the BLDC motor when the load moment of 
inertia is increased by a factor of 2 and the digital twin. The 
rotational velocity inconsistencies have a maximum value of 2.14 
rad/s at 1.55 sec. and decreases to zero at steady-state. 

 

Figure 7. The electric current and angular velocity uncertainties of the 
BLDC motor when the load moment of inertia is increased by a factor of 
2 and the digital twin 

Fig. 8 shows the electric current and angular velocity 
incoherencies of the BLDC motor when the resistance of phase 
A is reduced by a factor of 2 and the digital double. 

 

Figure 8. The electric current and angular velocity incoherencies of the 
BLDC motor when the resistance of phase A is reduced by a factor of 2 
and the digital twin 

4 DISCUSSION 

The simulation results show that there are differences in the 
angular velocity of BLDC motor and digital twin when defects 
occur. When phase is short-circuited (R=0), the rotor angular 
velocity fluctuates around zero. The BLDC motor does not fulfil 
its function. When BLDC motor at demagnetisation of the 
permanent magnets, the rotor angular velocity of the BLDC 
motor and the digital twin have different angular velocities. 

5 CONCLUSION 

1. On the basis of theoretical and experimental studies, the 
actual task of creating a system of diagnostics and monitoring of 
BLDC motor, which differs from similar systems by joint analysis 
of mechanical and electrical parameters, is solved. Thus, the 
efficiency of technical condition monitoring is increased in the 
form of reliability index increase. 
2.  A simulation model of BLDC motor and its digital twin has 
been developed, on the basis of which it is possible to investigate 
the dependences between defects and changes in rotation 
speed and electric current. To determine the defect, by 
enumerating all parameters of the BLDC motor, as well as 
changing the load and moment of inertia, the angular velocity 
and electric current between the BLDC motor and the digital 
twin should be matched as closely as possible. 
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