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In recent years, soft robotics has emerged as a key area of 
research in modern robotics. Among structural solutions, 
robotic arms play a key role. From the perspective of actuation, 
soft arms can be classified into two main types: cable-driven 
and pressure-driven arms. The latter often utilize pneumatic 
artificial muscles, whose characteristics — such as hysteresis 
and high degrees of freedom—make traditional dynamic 
modeling methods ineffective. This work focuses on the 
application of recurrent neural networks (LSTM, GRU), which 
are well-suited for processing time-series data. To improve 
model accuracy, a Curriculum Learning strategy with varying 
training block sizes is applied, enabling gradual learning. 
The proposed methods are evaluated on the task of predicting 
the X-coordinate of the soft arm’s endpoint. Results confirm 
the effectiveness of the selected approach and demonstrate 
the positive impact of Curriculum Learning on the ability of 
RNNs to model the dynamic behavior of soft robotic arms. 
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1 INTRODUCTION 

The use of new types of actuators in robot design opens up 
possibilities for expanding their functionality and mimicking 
nature-inspired movements. Pneumatic artificial muscles 
(PAMs) enable the conversion of air pressure into segment 
bending [Nguyen 2019, Yasa 2023]. A significant portion of soft 
fluidic robotic arm designs is based on a circular arrangement 
of PAMs around the longitudinal axis of the segment. Rigid 
mount frames are also used in the arm structure to help 
maintain the precise shape of the segment and enhance its 
stability during deformation. Both ends of the segment are 
fitted with end caps, to which the muscles and the axial 
element are attached. Individual segments can be 
interconnected, creating multi-segment arms with a greater 
range of motion [Godage 2016, Olson 2020, Peng 2019]. 
The outer layer of a pneumatic muscle consists of helically 
wound fibers interlaced at a defined angle. When compressed 
air is supplied, the muscle contracts in length and increases in 
diameter. At the maximum allowable pressure, it reaches its 
largest diameter and shortest length. Conversely, at minimal 
internal pressure, it has the smallest diameter and greatest 
length. The combination of the muscle’s structure, the 
materials used, and the method of activation results in the 
nonlinear dynamics of its motion [Trojanova 2021, Kalita 2022]. 
The use of non-electric actuation combined with a soft 
structure enables the deployment of these robotic arms in a 
variety of tasks. Compared to traditional rigid arms, their design 
is significantly lighter and allows deformation at any point along 
the structure, increasing overall flexibility. These characteristics 

make them particularly well-suited for object manipulation 
[Fantoni 2014], general-purpose applications in robotics 
[Deaconescu, 2008], and operations in unstructured 
environments [Della Santina 2020]. 
However, practical applications of these arms require precise 
control and modeling methods. Alongside the development of 
soft robotics, modeling approaches have also evolved, with the 
choice of a suitable model for a given task depending primarily 
on the required accuracy and computational complexity [Yasa, 
2023]. One of the most commonly used methods is the 
Piecewise Constant Curvature (PCC) model. Its fundamental 
principle is that, based on known pressure values in individual 
muscles, it is possible to determine the changes in their length 
and the forces acting on the segment. These values are then 
used to calculate the shape and spatial position of the segment 
[Sokolov 2024]. To determine the final configuration of a single 
segment, three main parameters are typically used: arc length 
(𝑙), bending angle (𝜃), and the angle of the plane containing the 
arc (𝛼) [Sokolov 2024, Yasa 2023]. 
Another effective method for modeling soft arms is the 
Cosserat rod theory. The previously mentioned PCC model is 
based on this theory. To reduce computational complexity, the 
PCC model simplifies several parameters such as bending, 
torsion, shear, and elongation. As a result, the Cosserat rod 
theory is not only a more accurate method for modeling soft 
arms, but also more computationally demanding. In 
applications where real-time performance is required, the PCC 
model is typically used instead [Armanini 2023, Gilbert 2019]. 
However, Cosserat rod theory is particularly important in the 
context of soft fluidic arms, especially where precise prediction 
of motion and deformation is required. These arms, actuated 
by pneumatic muscles, exhibit strongly nonlinear behavior 
resulting from the combination of pressure forces, material 
elasticity, and geometric nonlinearities. The Cosserat approach 
enables detailed modeling of continuous deformation along the 
entire segment, capturing more realistic curvatures and 
torsional effects than the simplified PCC model. As a result, 
Cosserat rod theory is primarily used in simulations and 
analyses where accuracy is crucial — for example, in the design 
of control algorithms or the validation of prototypes [Alessi 
2024, Xun 2023]. 
In contrast to physics-based approaches such as Cosserat rod 
theory or the PCC model—which require detailed information 
about the segment’s geometry and material properties (e.g., 
length, diameter, elasticity modulus, pressure, etc.)—there are 
also machine learning-based approaches [Yasa 2023]. These 
methods do not require a detailed description of the system’s 
dynamics but instead learn the behavior of the arm directly 
from data. Among the most commonly used are multilayer 
perceptrons (MLPs) [Ogunmolu 2016], recurrent neural 
networks (RNNs), and their modern variants such as Long 
Short-Term Memory (LSTM) [George Thuruthel 2022, Thuruthel 
2019] and Gated Recurrent Unit (GRU) [Bonassi 2021]. These 
models can be effective in approximating the nonlinear 
behavior of soft arms, especially when sufficient amounts of 
training data collected from the real system are available. 
Architectures such as LSTM, GRU, and recurrent neural 
networks (RNNs) in general are well-suited tools for solving 
time-dependent tasks. Unlike standard neural networks, these 
models process not only the current input data but also 
information from previous time steps in the form of hidden 
states [Salem 2020]. This mechanism allows them to retain 
relevant information over multiple iterations, which is crucial 
for tasks involving sequential data. 
The main difference between LSTM and GRU architectures lies 
in how they update the hidden state. GRU is a simplified 
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version of LSTM, making it less computationally demanding and 
generally faster to train. The resulting efficiency of an LSTM or 
GRU network depends on the complexity of the specific task 
[da Silva, 2024]. 
When working with nonlinear systems, it is often effective to 
use deep neural networks (DNNs) with an LSTM or GRU 
structure consisting of more than one layer. In practice, the so-
called “black-box” modeling approach is commonly applied, 
where the model relies solely on input-output data and does 
not require knowledge of the system’s exact dynamics [Bruder, 
2019]. In contrast, methods such as PCC or Cosserat rod theory 
are considered “white-box” approaches, as they are based on 
physical principles and their results can be verified through 
analytical calculations. In black-box models, the internal 
structure of the model is unknown—the network learns the 
system’s behavior exclusively from data. The accuracy of such 
models is evaluated by comparing their outputs with reference 
data and subsequently calculating statistical accuracy metrics 
[da Silva, 2024, Le 2021].  
When training deep neural networks, it may happen that the 
model either fails to learn the relationship between inputs and 
outputs or learns it with insufficient accuracy. To minimize this 
issue, [Bengio 2009] introduced an approach for training 
models according to a predefined schedule, which the authors 
called Curriculum Learning (CL). 
This approach is inspired by the principle of gradual learning—
the model is first trained on simpler examples and only later on 
more complex ones. Such organization of the data can lead to 
faster convergence and higher accuracy of the resulting model. 
The effectiveness of this method is also supported by the study 
[Chakraverty 2022], in which Curriculum Learning (CL) was 
applied to a feedforward neural network for solving differential 
equations. The approach significantly improved the accuracy 
and stability of the computations. Further evidence of CL's 
effectiveness is provided by [Hacohen 2019], which 
demonstrates systematic performance improvements across 
different architectures and datasets compared to conventional 
training. 
The article is further structured into four main chapters. 
Chapter 2 describes the experimental system and the data 
processing approach. Chapter 3 focuses on the methodology 
used, specifically the neural network architectures (LSTM, 
GRU), their parameters, and the training process, including the 
implementation of the Curriculum Learning method. Chapter 4 
presents the results obtained, along with their analysis and a 
comparison of the individual models. The final chapter 
summarizes the main findings, supplemented by a brief 
discussion of observed trends and recommendations for future 
research. 

2 EXPERIMENTAL SYSTEM AND DATA COLECTION 

The data for training the neural networks were obtained from a 
real soft-fluidic robotic arm powered by compressed air. The 
arm's structure, shown in Fig. 1, consists of upper and lower 
plastic end caps produced using 3D printing, with a diameter of 
100 mm (1), three pneumatic muscles of the type FESTO DMSP-
10-300N-RM-CM (2), and a central axis. The axis is made of a 
latex tube filled with plastic granulate (3). All components are 
assembled into a single rigid structure using screw joints. 
The pneumatic muscles have a diameter of 10 mm, a tube 
length of 300 mm, and a total length of 360 mm. They are 
symmetrically arranged around the circumference of a pitch 
circle with a diameter of 80 mm, with an angular spacing of 
120° between each muscle.  

 
Figure 1. Soft-fluidic segment used for data collection for neural 
network training: segment in the non-activated state (a) with labeled 
components – plastic end caps (1), FESTO fluidic muscles (2), and 

central latex element with filler (3); segment in the activated state (b) 

These muscles enable active movement of the segment 
depending on the pressure inputs. By changing the pressure in 
individual muscles, their length changes, which causes the 
entire segment to bend. The direction of bending depends on 
the ratio of forces acting in each muscle. To regulate the 
pressure in the actuators, SMC ITV0050-3BS regulators were 
used—one for each muscle. The source of compressed air was a 
TAGRED PROFESSIONAL compressor. 
During the experiments, the position (X, Y, Z coordinates) and 
orientation (Roll, Pitch, Yaw rotations) of the segment’s 
endpoint in space were monitored. A POLHEMUS PATRIOT 
position tracker was used to record this data. Power supply for 
the components was provided by a KORAD KD3005D power 
source, and signal processing was handled using a Humusoft 
MF644 I/O card. 

 
Figure 2. Experimental system with labeled components 

The entire control system was designed in the MATLAB 
Simulink environment, which enabled segment control and 
measurement synchronization. The complete setup, including 
all components used, is shown in Fig. 2. 
For the purpose of training data collection, three independent 
control signals were generated to regulate the pressure in each 
muscle. Each signal corresponded to one muscle and had 
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pressure values ranging from 1 to 7.5 bar. The duration of 
individual pressure pulses varied between 1 and 10 seconds. 
During experiments on the real system, data were recorded at 
a frequency of 60 Hz. The actual pressure values in all three 
muscles (P1, P2, P3) were monitored, as well as the position 
(coordinates X, Y, Z) and orientation (angles Roll, Pitch, Yaw) of 
the segment’s endpoint in space. The result was a dataset 
containing 216,001 input-output samples. The pressure values 
were further smoothed using a Savitzky–Golay filter with a first-
degree polynomial and a window length of 23, in order to 
eliminate measurement noise. The origin of the coordinate 
system was placed at the tip of the arm in its non-activated 
state (P1 = P2 = P3 = 0 bar). All recorded endpoint positions 
were determined relative to this reference point. 

3 METHODOLOGY 

The training of neural networks (NNs) was carried out in the 
MATLAB environment using the Deep Learning Toolbox. To 
process time-dependent data, such as changes in pressure and 
position, recurrent neural networks with LSTM and GRU 
architectures were selected. 
Before training, the input data (actual pressure values) were 
normalized to the range [0, 1], and the output data 
(coordinates and angles) were normalized to the range [-1, 1]. 
Training was performed using the Adam optimization 
algorithm, with the number of epochs set to 50 and the mini-
batch size set to 32. The data were not shuffled during training 
(Shuffle = never), which preserved the temporal sequence of 
the inputs. The dataset was split into 70% for training, 15% for 
validation, and 15% for testing. The learning rate schedule was 
initially set to constant, with a starting learning rate of 0.001. 
To evaluate prediction accuracy, three metrics were used: Root 
Mean Square Error (RMSE), Mean Absolute Error (MAE), and 
the coefficient of determination (R²). RMSE was chosen as the 
primary indicator, as it quadratically emphasizes larger errors, 
providing a more sensitive and rigorous assessment of model 
performance. 
Before calculating the metric values, the neural network 
outputs were denormalized to ensure that the comparison with 
real data was relevant and accurate. 
First, models with different architectures (LSTM, GRU), varying 
numbers of hidden layers (1 to 3), and different numbers of 
neurons in those layers (50 or 100) were compared. Within a 
single model, all hidden layers had the same number of 
neurons. All tested neural network models had the same 
inputs—actual pressure values in the individual muscles. The 
output from the neural network was then compared with data 
obtained from real-world experiments. 
Additionally, both single-output models (X-coordinate only) and 
multi-output models (coordinates X, Y, Z and rotations Roll, 
Pitch, Yaw) were tested. Accuracy was evaluated exclusively 
based on the RMSE metric for the X-coordinate. The purpose of 
including multi-output models was to determine to what extent 
information about other coordinates and rotations influences 
the model's ability to accurately predict the X-coordinate. 
The trained neural networks were divided into four groups 
based on their architecture (LSTM or GRU) and output type (X 
or XYZ_all). In the first training round, a total of 24 different 
models were created, combining various numbers of layers and 
neurons. 
In the second round of training, different initial learning rates 
(InitialLearnRate = 0.01, 0.001, 0.0001) were tested for the best 
model from each group (based on the RMSE metric). The 
change applied only to new models, and the learning rate 
scheduling scheme was enabled (LearnRateSchedule = 

piecewise) with parameters LearnRateDropFactor = 0.5 and 
LearnRateDropPeriod = 10. 
To explore the impact of training data organization on 
prediction accuracy, the Curriculum Learning (CL) method was 
applied to the original models. This approach was chosen as an 
alternative to random shuffling, which is unsuitable when 
working with time-dependent data. Instead, CL was 
implemented in the form of block-wise training, where the 
network gradually learned from sequentially ordered data 
segments based on their complexity. 
In this phase, three models were created in each group 
(LSTM_X, LSTM_XYZ_all, GRU_X, GRU_XYZ_all), with training 
data divided into blocks of different sizes: 20,000, 15,000, and 
5,000 samples per block. Each model was trained on a different 
number of blocks, allowing the effect of block size and 
segmentation on network performance to be evaluated. The 
Initial Learn Rate parameter was kept the same as in the first 
training round. 
In the third round of training, a combination of the Curriculum 
Learning approach and scheduled learning rate reduction 
(LearnRateSchedule = 'piecewise') was tested. In each of the 
four groups, the best model from the second round—trained 
using Curriculum Learning and selected based on the RMSE 
value for the X-coordinate—was chosen as the baseline model. 
The same Curriculum Learning method (with the same training 
data segmentation) was then applied to these models, but this 
time using the piecewise learning rate schedule with the same 
parameters as in the second round (LearnRateDropFactor and 
LearnRateDropPeriod). 
As a result, 15 models were trained in each of the four groups 
(combinations of LSTM/GRU architecture and X/XYZ_all 
outputs), totaling 60 experimental models. Within the 
proposed framework, the following factors were tested for 
their impact: 
- two recurrent neural network architectures (LSTM and GRU), 
- two learning strategies (constant vs. scheduled learning rate), 
- additional output information (coordinates + orientations), 
- the Curriculum Learning method, 
- and its combination with scheduled learning rate reduction. 
This comprehensive approach established a robust foundation 
for analyzing the impact of individual parameters on the 
accuracy of modeling the motion of the soft-fluidic arm’s 
endpoint. 

4 RESULTS 

The results are presented in the form of tables and graphs. The 
names of individual models contain key information about the 
training settings used. Specifically, the name indicates the 
output type (X or XYZ_all), the initial learning rate in the case of 
using a piecewise LearnRateSchedule (e.g., LR_01), the 
application of Curriculum Learning along with the block size 
(e.g., cur_20), and the number of hidden layers and neurons 
per layer (e.g., 1x50). If a parameter is not explicitly stated in 
the model name, it is assumed that the default setting was 
used. In this research, the default setting is defined as the LSTM 
architecture, a constant learning rate of 0.001, and no 
application of the Curriculum Learning method. 
In the first round, a total of 24 models were trained - 12 with 
the LSTM architecture and 12 with the GRU architecture, each 
tested with X or XYZ_all outputs. The results are presented in 
Tables 1 and 2. The metric values were determined using the 
test dataset, which represented 15% of the original dataset. 
Based on these results, the best-performing models in terms of 
prediction accuracy were selected for the second round of 
training. 
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Table 1. Values of RMSE, MAE, and R² metrics for the training of LSTM 

models in the first round with X and XYZ_all outputs 

Model name RMSE [cm] MAE [cm] R2           [-] 

X_1x50 1.3408 1.0619 0.8677 

X_1x100 1.1586 0.8873 0.9012 

X_2x50 1.1029 0.8358 0.9105 

X_2x100 1.0594 0.8073 0.9174 

X_3x50 1.0937 0.8169 0.9120 

X_3x100 1.1882 0.8921 0.8961 

XYZ_all_1x50 1.3492 1.0362 0.8661 

XYZ_all_1x100 1.2461 0.9381 0.8858 

XYZ_all_2x50 1.2769 0.9663 0.8800 

XYZ_all_2x100 1.1875 0.8803 0.8963 

XYZ_all_3x50 1.2773 0.9453 0.8800 

XYZ_all_3x100 1.1465 0.8347 0.9033 

For single-output models (X), the top results were achieved by 
the X_2x100 models, with RMSE values of 1.0594 cm for LSTM 
and 1.0455 cm for GRU. For models with six outputs (XYZ_all), 
the highest accuracy was shown by the XYZ_all_3x100 models, 
with RMSE = 1.1465 cm (LSTM) and 1.0705 cm (GRU). 

Table 2. Values of RMSE, MAE, and R² metrics for the training of GRU 
models in the first round with X and XYZ_all outputs 

Model name RMSE [cm] MAE [cm] R2           [-] 

X_1x50 1.1263 0.8924 0.9067 

X_1x100 1.1333 0.8904 0.9055 

X_2x50 1.1365 0.8824 0.9050 

X_2x100 1.0455 0.8223 0.9196 

X_3x50 1.0686 0.8287 0.9160 

X_3x100 1.0649 0.8315 0.9166 

XYZ_all_1x50 1.6746 1.3872 0.7937 

XYZ_all_1x100 1.0904 0.8541 0.9125 

XYZ_all_2x50 1.1759 0.9209 0.8983 

XYZ_all_2x100 1.0831 0.8537 0.9137 

XYZ_all_3x50 1.0979 0.8518 0.9113 

XYZ_all_3x100 1.0705 0.8381 0.9157 

These results are consistent with the other metrics (MAE and 
R²), which are visualized in Fig. 3. 
Among the 24 models, the best results were achieved by the 
X_2x100 model with GRU architecture, which recorded RMSE = 
1.0455 cm, MAE = 0.8223, and R² = 0.9196. 

 
Figure 3. Comparison of RMSE, MAE, and R² metrics for the 4 best 

models from the first round of training 

In the second round of training, the selected models were 
updated by changing the LearnRateSchedule parameter to 
"piecewise." The number of training epochs remained the 
same—50. In total, 12 models were trained in this way—3 for 
each group based on architecture (LSTM/GRU) and output type 
(X / XYZ_all). 
Independently of this branch, the second round also tested the 
impact of the Curriculum Learning (CL) method, which was 
applied to 4 selected models from the first round. For each of 
these models, three versions were trained using different 
training block sizes—and thus a different number of blocks—
resulting in 12 additional models. Each block was trained for 
the same number of epochs—50. 

Table 3. Values of RMSE, MAE, and R² metrics for the training of LSTM 
models in the second round with X and XYZ_all outputs 

Model name 
RMSE 
[cm] 

MAE 
[cm] 

R2      [-] 

X_LR_01_2x100 1.1515 0.8777 0.9024 

X_LR_001_2x100 1.2259 0.9446 0.8894 

X_LR_0001_2x100 2.5952 2.0715 0.5045 

X_cur_20_2x100 0.7461 0.5035 0.9590 

X_cur_15_2x100 0.6907 0.4560 0.9649 

X_cur_5_2x100 0.5858 0.4040 0.9748 

XYZ_all_LR_01_3x100 1.2170 0.8876 0.8910 

XYZ_all_LR_001_3x100 1.3022 0.9836 0.8752 

XYZ_all_LR_0001_3x100 3.4193 2.7898 0.1399 

XYZ_all_cur_20_3x100 0.7853 0.5049 0.9546 

XYZ_all_cur_15_3x100 0.7256 0.4811 0.9613 

XYZ_all_cur_5_3x100 0.6159 0.4182 0.9721 

In total, 24 new models were created in the second round—half 
with a modified learning rate and half using the Curriculum 
Learning method. 
The results from Table 3 and Table 4 show that changing the 
LearnRateSchedule parameter from a constant value to 
piecewise had no significant impact on model accuracy. This 
conclusion applies to both architectures (LSTM and GRU) and 
both output types (X and XYZ_all). In contrast, the application 
of the Curriculum Learning method demonstrated improved 
prediction accuracy of the X-coordinate across all four model 
groups. Notable improvements were observed particularly in 
the X_cur_5_2x100 and XYZ_all_cur_5_3x100 models for both 
LSTM and GRU architectures. 

Table 4. Values of RMSE, MAE, and R² metrics for the training of GRU 
models in the second round with X and XYZ_all outputs 

Model name 
RMSE 
[cm] 

MAE 
[cm] 

R2     [-] 

X_LR_01_2x100 1.0592 0.8291 0.9175 

X_LR_001_2x100 1.0770 0.8461 0.9147 

X_LR_0001_2x100 3.1086 2.5323 0.2891 

X_cur_20_2x100 0.6505 0.4365 0.9689 

X_cur_15_2x100 0.6184 0.4061 0.9719 

X_cur_5_2x100 0.5903 0.4008 0.9744 

XYZ_all_LR_01_3x100 1.0924 0.8542 0.9122 

XYZ_all_LR_001_3x100 1.1088 0.8687 0.9095 

XYZ_all_LR_0001_3x100 3.2759 2.6689 0.2105 

XYZ_all_cur_20_3x100 0.7049 0.4716 0.9634 

XYZ_all_cur_15_3x100 0.7083 0.4791 0.9631 

XYZ_all_cur_5_3x100 0.6307 0.4152 0.9707 
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For both architectures and output types, the best results were 
achieved by models trained with the smallest blockSize value 
(5000), i.e., with the highest number of training blocks. 
For single-output models (X-coordinate), the best results 
achieved were as follows: 
- LSTM: RMSE = 0.5858 cm, MAE = 0.4040 cm, R² = 0.9748 
- GRU: RMSE = 0.5903 cm, MAE = 0.4008 cm, R² = 0.9744 
Models with six outputs (XYZ_all) achieved slightly lower 
accuracy: 
- LSTM: RMSE = 0.6169 cm, MAE = 0.4182 cm, R² = 0.9721 
- GRU: RMSE = 0.6307 cm, MAE = 0.4152 cm, R² = 0.9707 
A comparison of the model results is shown in Fig. 4. The 
percentage improvement of these models relative to the 
original models from the first round is presented in Table 5. 
Based on these results, the selected models were chosen for 
the third round of training. 

 
Figure 4. Comparison of RMSE, MAE, and R² metrics for the 4 best 
models from the second round of training 

Among the 24 models in the second round, the best results 
were achieved by the X_cur_5_2x100 model with LSTM 
architecture. 

Table 5. Percentage improvement in accuracy of the models 

X_cur_5_2x100 and XYZ_all_cur_5_3x100 (based on the RMSE metric) 
compared to the original models without the application of Curriculum 
Learning (X_2x100 and XYZ_all_3x100) 

Architecture LSTM GRU 

Model name  X_2x100 

X_cur_5_2x100 44.7045% 46.2800% 

  XYZ_all_3x100 

XYZ_all_cur_5_3x100 43.5490% 41.0836% 

In the third round of training, the same principle of scheduled 
learning rate reduction (LearnRateSchedule = 'piecewise') was 
applied as in the previous round. Within this approach, an 
additional 12 models were trained using the Curriculum 
Learning method. 

Table 6. Values of RMSE, MAE, and R² metrics for the training of LSTM 

models in the third round with X and XYZ_all outputs 

Model name 

RMSE 

[cm] 

MAE 

[cm] 

R2       [-] 

X_LR_01_cur_5 _2x100 0.9458 0.7019 0.9342 

X_LR_001_cur_5 _2x100 0.8199 0.5685 0.9505 

X_LR_0001_cur_5 _2x100 1.0219 0.7377 0.9232 

XYZ_all_LR_01_ 
cur_5_3x100 

0.7108 0.4595 0.9628 

XYZ_all_LR_001_ 
cur_5_3x100 

0.716 0.4729 0.9623 

XYZ_all_LR_0001_ cur_5 
_3x100 

0.8641 0.5544 0.9451 

The results, shown in Table 6 and Table 7, indicate that for 
single-output models, the best performance was achieved by 
the X_LR_001_cur_5_2x100 model in both architectures (LSTM 
and GRU). For models with six outputs, the best results were 
obtained by the XYZ_all_LR_01_cur_5_3x100 model for the 
LSTM architecture, and by the XYZ_all_LR_001_cur_5_3x100 
model for the GRU architecture. 

Table 7. Values of RMSE, MAE, and R² metrics for the training of GRU 

models in the third round with X and XYZ_all outputs 

Model name 

RMSE 

[cm] 

MAE 

[cm] 

R2       [-] 

X_LR_01_cur_5 _2x100 0.7976 0.5784 0.9532 

X_LR_001_cur_5 _2x100 0.6846 0.4697 0.9655 

X_LR_0001_cur_5 _2x100 0.7966 0.5536 0.9533 

XYZ_all_LR_01_ 
cur_5_3x100 

0.7463 0.5338 0.959 

XYZ_all_LR_001_ 
cur_5_3x100 

0.6942 0.4693 0.9645 

XYZ_all_LR_0001_ cur_ 
5_3x100 

0.7685 0.5228 0.9565 

Despite the combination of approaches (CL + LR), a slight 
decrease in prediction accuracy for the X-coordinate was 
observed compared to the second-round results, as indicated 
by the values of the RMSE, MAE, and R² metrics. 
Figure 5 shows a comparison of the four best models from the 
third round. Despite a decrease in the effectiveness of these 
models compared to the second round, the results are still 
better than those achieved by the models in the first round. 

 
Figure 5. Comparison of RMSE, MAE, and R² metrics for the 4 best 
models from the third round of training 

 
Figure 6. Comparison of RMSE, MAE, and R² metrics for the best 
models with X and XYZ_all outputs from each training round 

Figure 6 summarizes the comparison of the six most successful 
models from the entire study based on three metrics—RMSE, 
MAE, and R². It is evident that the best results were achieved by 
the X_cur_5_2x100 model with LSTM architecture. 
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This comprehensive view confirms that the combination of a 
single-coordinate output (X), the application of Curriculum 
Learning with a small block size (blockSize = 5000), and a well-
chosen architecture (2 hidden layers with 100 neurons) leads to 
the most effective model in the entire experiment. 

 
Figure 7. Pressure variation in individual muscles. Values used as input 
to the neural network for predicting the X-coordinate 

 
Figure 8. X-coordinate trajectory on test data. Prediction by model 
X_cur_5_2x100 with LSTM architecture 

The input data consisted of actual pressure values are shown in 
Figure 7. Figure 8 illustrates the prediction accuracy of the X-
coordinate on test data achieved by the most successful model 
(X_cur_5_2x100 with LSTM architecture). The model closely 
follows the real trajectory, especially in dynamic sections with 
position changes. Larger deviations occur mainly in stable 
segments where movement is minimal. Since dynamic sections 
last longer than static ones, the model has access to more 
training data for transitional states. This may lead to reduced 
accuracy in stable sections. Therefore, it is advisable to increase 
the proportion of stable segments in the training data to help 
the model better learn how to handle these scenarios. 

5 DISCUSSION AND CONCLUSION 

The achieved results confirm the ability of the proposed neural 
networks to effectively model the dynamics of soft-fluidic arms. 
The models were tested on predicting a single coordinate (X), 
which serves as a foundation for future extension to predicting 
additional coordinates and rotational angles. 
The calculated metrics demonstrate the impact of learning rate 
changes and data organization according to the Curriculum 
Learning approach on the final model accuracy. The results 
confirm that, with the number of epochs held constant, 
changing the learning rate did not lead to a significant 
improvement in model performance. The findings suggest that 
to enable effective learning at lower learning rates, the number 
of training epochs should be increased so that the network can 
better learn complex temporal dependencies. 
The differences in performance between models with one 
output and those with six outputs clearly show higher accuracy 
in models working with a smaller number of output 
parameters. This may suggest that the dependencies between 
coordinates and angles do not have a significant positive impact 
on network accuracy. This research demonstrated that 

increasing the number of outputs without adjusting the 
architecture and hyperparameters leads to reduced neural 
network performance. On the other hand, the results indicate 
the potential of increasing the number of hidden layers and 
neurons as a solution for models with a larger number of 
output parameters. 
The results obtained from the third round of training confirm 
the impact of the tested approaches on model performance. 
The combination of scheduled learning rate reduction and the 
Curriculum Learning (CL) method led to improved accuracy in 
all four models compared to their counterparts from the first 
round. Furthermore, the positive effect of CL alone on 
enhancing the prediction of the X-coordinate was also 
confirmed. 
The results also suggest that the performance of the models in 
the third round was slightly lower than in the second round, 
highlighting the significant impact of learning rate settings. 
With the number of epochs (50) kept constant, models with a 
lower learning rate were unable to sufficiently adapt to the 
training data. Therefore, it becomes evident that when the 
learning rate is reduced, the number of epochs must be 
proportionally increased to ensure sufficient time for learning 
complex nonlinear dependencies.  
It was also reaffirmed that models with a smaller number of 
outputs (e.g., only the X-coordinate) achieve better accuracy. In 
the case of models with six outputs, the unchanged network 
architecture limits performance, indicating the need to expand 
the network (increased number of layers and neurons) when 
working with a larger number of output parameters. When 
comparing the effectiveness of LSTM and GRU architectures 
throughout the entire experiment, it is not possible to 
definitively determine which architecture is superior. The 
results show that the choice of a suitable architecture (LSTM or 
GRU) depends on the specific task and context. This conclusion 
also applies to other tested approaches and hyperparameters—
their effectiveness is conditioned by the nature of the data and 
the modeling objective. 

 

Figure 9. Distribution of Models by Prediction Accuracy (R²) 

To better evaluate overall model accuracy, a percentage-based 
classification of models was conducted according to their R² 
values, following commonly accepted thresholds [Chicco 2021]. 
Models with R² ≥ 0.95 were considered highly accurate, while 
those below 0.80 were classified as insufficient. As shown in 
Fig. 9, this distribution clearly reflects the impact of training 
strategies and architectural choices on model performance.  
The achieved results, along with the evaluation of models 
based on various parameters, demonstrate the high 
effectiveness of recurrent neural networks (RNNs) with LSTM 
and GRU architectures in modeling the dynamics of continuous 
(soft-fluidic) arms. The examined approaches, including 
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learning rate adjustment and the Curriculum Learning method, 
significantly contributed to improving model accuracy. 
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