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Collaborative robots play an important role in production, 
assembly, operating systems, and can be used in many 
automation tasks. Due to the repetitive nature of robot actions, 
the overall efficiency of the production system is mainly 
determined by the precision of the robot's movement. This 
study proposes the optimization of robotic path planning relied 
on its digital twin combined with the A* algorithm. Unity is 
used to create the digital twin of the UR3 robot, where its path 
planning, based on an improved A* algorithm, is trained in a 
virtual environment before being implemented in the physical 
world. Some limitations associated with the traditional A* 
algorithm include redundant points, jagged paths and proximity 
to obstacles, increasing collision risks. Therefore, we developed 
the BRS-improved A* algorithm that incorporates buffer 
distance, redundant point elimination, and smoothing 
optimization using Bezier curves. Realistic movements for the 
robot are planned by simulated training in a virtual 
environment. In addition, the virtual robot's available path will 
be flexibly adjusted based on the physical robot's motion data, 
allowing for the re-adjustment of the physical robot's motion 
trajectory. This work uses a robot path planning algorithm to 
optimize the robot's path by reducing errors in the physical 
robotic path through interaction between virtual and real data. 
Additionally, optimizing the robot's path reduces the distance it 
needs to travel, thereby increasing energy efficiency for both 
the robot and the entire system.  
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1 INTRODUCTION 

Collaborative robots are extensively utilized in production 
systems, where humans and robots work together, rapidly 
taking on essential roles in daily life. These robots have to plan 
their movements to align with the tasks they perform within 
the system, ensuring minimal collisions with humans. Over the 
last decades, a collision-free route or path planning for a 
moving entity, such as a robot, within a given environment has 
been subject to numerous studies [Cai 2019, Costa 2019, 
Madava 2019, Ab Wahab 2020, Wang 2020]. Classic path 
planning algorithms encompass the Ant Colony Optimization 
(ACO) [Kumar 2018, Ning 2018, Maheshwari 2021], Genetic 
Algorithm (GA) [Elhoseny 2018, Nazarahari 2019], Rapidly-
exploring Random Tree (RRT) [Hauer and Tsiostras 2017, 
Hirakawa 2019], and the A* algorithm [Hart 1968, Liu 2019, 
Sedighi 2019]. The A* algorithm is particularly popular among 
these methods, recognized for its graph search approach that 
effectively finds the optimal path through iterative refinement. 

The effectiveness of the A* algorithm is mainly shown through 
the speed of path planning and the reliability of the chosen 
route. Despite of being extensively studied, the application of 
this algorithm still suffers from some flaws, such as redundant 
points and jagged paths. These factors reduce the certainty of 
the planned route. Therefore, the performance of the 
algorithm and the robot's speed are being evaluated by 
examining the speed of path planning and the smoothness of 
the path. To strengthen the traditional A* algorithm, the 
proposed approach should include measures to eliminate 
redundant points and create a smoother path. This research 
paper aims at proposing three methods to improve the 
traditional A* algorithm, which include buffer distance, 
redundant point elimination, and smoothing. Simulation 
experiments were conducted to evaluate the efficiency of the 
traditional A* algorithm compared to the BRS-improved A* 
algorithm in path planning. The BRS-improved A* algorithm 
was also proven to be effective when it was integrated into the 
UR3 collaborative robot hardware platform and tested in real-
world scenarios.  

Digital twins, recognized as a pivotal technology for realizing 
the concept and objectives of smart manufacturing, have 
garnered significant attention from academia and are 
increasingly being deployed across various industrial sectors 
[Jiang 2021, Hao 2022]. By enabling information interaction 
between physical and virtual environments, they digitalize 
models of physical objects for simulating these objects’ 
operations in the physical environment and autonomously 
optimizing the operational states of these objects [Fei 2019, Lu 
2020, Jiang 2021]. As a technology that fully utilizes models, 
data, and integrates multiple fields, digital twins aim at the 
entire product lifecycle process, acting as a bridge linking the 
physical and digital realms to provide more intelligent, efficient, 
and real-time services [Jiang 2019, Liao 2021]. Accurate 
distribution based on digital twins for manufacturing 
operations is an application that combines digital twin 
technology and robots [Li 2019, Li 2020]. 

In this paper, the combination of BRS-improved A* algorithm 
and digital twin was proposed in collaborative robot path 
planning. The novelty of this study lies in integrating a digital 
twin of the UR3 robot with a BRS-improved A algorithm* 
(Buffer distance, Redundant point elimination, Smoothing) for 
collaborative robot path planning. This is the first time this 
combination has been proposed to enhance robot motion 
precision, path safety, and real-time optimization through 
virtual–real interaction. 

2 BRS-IMPROVED A* ALGORITHM  

2.1 Basic theory of the traditional A* algorithm 

The A* algorithm is one of the most well-known path planning 
algorithms; it was first presented and thoroughly explained in 
[Hart 1968]. It is designed as a heuristic search algorithm that 
looks for the least expensive path between the initial and goal 
nodes by examining every option. This algorithm stands out 
from other blind search algorithms by utilizing heuristic 
information relevant to the problem's characteristics to direct 
its search effectively [Fu 2018]. It works by estimating the 
distance on a 2D plane between any given node and the goal 
node using an Open list, a Closed list, and a heuristic function.  
The reason A* is regarded as a best-first algorithm is that it 
evaluates each cell within the configuration space based on the 
value of: 
𝑓(𝑛)=𝑔(𝑛)+ℎ(𝑛)                    (1)                                  
where: 𝑔(𝑛) represents the total cost incurred along the path 
from the start node to the current node, 𝑛. ℎ(𝑛) denotes the 
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estimated cost from the current node 𝑛 to the goal node, 
calculated using the heuristic function. 𝑓(𝑛) is the evaluation 
function for node 𝑛. 
The node with the smallest 𝑓(𝑛) is chosen as the next node in 
the path after the algorithm accesses each neighbouring node 
of the currently evaluated node using 𝑓(𝑛). The A* algorithm 
has the benefit of allowing for the adoption, modification or 
addition of different distance measures as standard distances. 
 

2.2 Proposed method 

Buffer distance 
The path produced by the traditional A* algorithm may pass 
near obstacles. A collaborative robot that follows this path, has 
a significant danger of colliding with obstacles. Consequently, it 
is crucial to keep a suitable distance from obstacles when 
planning a path. In this study, the concept known as "buffer 
distance" was applied [Wang 2022] i.e., leaving extra room 
around obstacles as safety precaution. Robots design their 
routes using rasterized maps, and the buffer distance extends 
beyond obstacles by using a grid as its fundamental unit. It is a 
function of the robot’s speed, the size of the robot model, and 
the number of grids, indicating the closest distance the path 
can approach obstacles. 
Nodes within the buffer distance, along with the obstacles, will 
not be visited during path planning. This buffer distance acts as 
a "collision buffer" between the robot and obstacles, 
significantly reducing the risk of collisions during movement. 
Thus, buffer distance enhances both the algorithm’s robustness 
and efficiency. It reduces effectively the map scale, since the 
algorithm avoids visiting the extended nodes. As a result, the 
algorithm’s overall traversal of nodes is lowered, increasing its 
efficiency. Fig. 1 displays the schematic diagram of buffer 
distance.  
 

    

 
 

Figure 1. Schematic diagram of buffer distance 
 

When it comes to choosing the buffer distance size, the 
rasterized map's grid is usually selected by default. We chose 
one grid to be the buffer distance in the simulation tests. The 
buffer distance typically defaults to the radius of the cylinder or 
sphere in real-world settings. This distance minimizes the 
amount of journey space wasted while ensuring the path's 
dependability. The bilateral buffer distances equal the robot's 
size when there are impediments on both sides. 
It is important to consider how the automatic calculation of 
buffer distance is managed for various environments. To 
determine the buffer distance, the robot equivalent model was 
used and the following assumptions were made to simplify the 
model.  
The robot model has a radius of 𝑟 and a cruising speed Vr, 
which must adhere to the condition 𝑉r ≤ 𝑉max with 𝑉𝑚𝑎𝑥 being 
the maximum cruising speed based on the robot's 
performance. 𝑉𝑟 is a speed threshold, and 𝑉𝑖 is the current 

speed of the robot. When 𝑉𝑖 ≤ 𝑉𝑟, the buffer distance is 
extended by only one node. Nevertheless, the chance of a 
collision between the robot and obstacles rises when the 
present speed surpasses 𝑉𝑟, requiring an increase in the 
number of enlarged nodes. One or more square grids can be 
used to represent the obstacle. According to the mapping rule 
between the robot model and the map, the robot’s radius 
corresponds to the length of one grid unit. The relationship 
between the current speed and the speed threshold 
determines the connection between the number of expansion 
nodes and the robot’s speed. 
 

                        r        iV V
                                    (2) 
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where the number of expansion nodes is represented by E(Vi). 
In terms of calculating the magnitude of the buffer distance, 
the cylinder's radius is used as the default value when Vi ≤ Vr. 
This distance offers a sufficient "collision buffer" to ensure the 
path's reliability while minimizing wastage of physical space the 
robot travels through. When obstacles are present on both 
sides, bilateral buffer distances are equivalent to the robot's 
own dimensions. As the robot's speed increases, the risk of 
collisions also increases. Therefore, expanding the buffer 
distance ensures the algorithm's robustness remains intact. 
E(Vi) should increase as Vi increases; otherwise, the risk of 
robot collisions rises. Thus, the calculation of the buffer 
distance exhibits a linear correlation with the speed Vi. 

Redundant point elimination 
The redundant point elimination method initially improves by 
pre-planning a local path from the current node to the goal 
node and subsequently exploring the surrounding area of the 
current node. If this local path is deemed safe and collision-
free, it is directly traversed. Additionally, the method employs 
post-processing techniques to optimize the resulting path, 
particularly by straightening the local path, thereby reducing 
the number and length of required local paths. 
In this method, the probabilistic motion planning's query phase 
utilizes an improved version of the A* algorithm [Sánchez 2002, 
Clark 2005]. The probabilistic motion planning consists of two 
stages: preprocessing and querying. During preprocessing, 
collision-free sample points are randomly generated within the 
robot's workspace, which serve as nodes in the subsequent 
stages. 
Subsequently, local path planning constructs safe and collision-
free paths between these sample points. These paths are 
validated for feasibility and collision avoidance by mapping 
them into the robot's configuration space, considering shared 
constraints such as velocity, acceleration, and energy 
optimization. Thus, collision-free sample points and safe local 
paths form the components of the probabilistic roadmap. 
In the querying stage, employing the redundant point 
elimination method, probabilistic motion planning generates a 
path that searches for and obtains a safe path for the robot's 
movement from the initial node (Starting point) to the goal 
node (Ending point).  
In the redundant point elimination method, the waypoints 
identified by the traditional A* algorithm as the robot's path 
undergo a calculation. The method evaluates local connections 
to subsequent waypoints to ascertain whether they pass 
through obstacles. If a connection avoids intersecting with 
obstacles, the intermediate waypoint is bypassed. This method 
significantly decreases the number of waypoints the robot must 
traverse, while still guaranteeing a valid path from the starting 

iE(V ) 
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point to the ending point as specified in the original problem 
statement. The flowchart illustrating the redundant point 
elimination method (Fig. 2) is outlined as follows [Fu 2018]: 

 
Figure 2. The flowchart of the improved A* algorithm (redundant point 

elimination) 

 
Step 1: Start by initializing i to 1 and j to n − 1, where i and j 
represent indices of the current nodes being evaluated along 
the robot's path stored in the CLOSED list. Optimize the path 
from the initial node p1 to the goal node pn. 
Step 2: Define all local segments between node pi and pj, where 
j ranges from i + 1 to n − 1. 
Step 3: Verify if the local segments encounter obstacles. If all 
local paths result in collisions, proceed to Step 4. Otherwise, 
move to Step 5. 
Step 4: Record the local segment between node pi and pi+1, 
then increment i by 1 (i = i + 1). 
Step 5: Store the local segment containing node pj with the 
highest j value, replace i + 1 with j − 1, and set i = j. 
Step 6: Check if i equals n − 1 (indicating that node i is close to 
the last node). If yes, proceed to Step 7. If not, return to Step 2. 
Step 7: Connect the nodes in the locally optimized path that 
was previously stored, resulting in a sequential connection of 
the globally optimized path. 
The optimization results achieved by the improved A* 
algorithm (redundant point elimination) compared to the 
traditional A* algorithm are illustrated in Figs. 3-6. 

 

Figure 3. A simple example of a robot task 

 

Figure 4. A* algorithm-based path planning (traditional) 

 

Figure 5. Optimal result of the first step on the left, the second step on 
the right 

 

 

Figure 6. The optimal result of the final step 

In summary, the redundant point elimination method plays a 
vital role in optimizing the planned trajectory by evaluating and 
eliminating unnecessary intermediate waypoints when a direct 
connection between two non-consecutive nodes is both 
feasible and collision-free. This approach significantly reduces 
the total number of path points, thereby shortening the robot’s 
travel path and improving its operational efficiency. Moreover, 
it maintains the validity of the path while concurrently lowering 
the computational burden and execution complexity associated 
with robot navigation. 

Smoothing optimization 
Paths can be smoothed with the use of Bezier curves. A space 
curve with advantageous geometric qualities is known as a 
Bezier curve, and it was first proposed by French engineer 
Pierre Bezier in 1962. Often used in computer graphics and 
computer-aided design, it does not always go through all of its 
control points, or defining data points. When these points form 
a convex polygon, the resulting Bezier curve is also convex, 
distinguishing it from other curves like cubic splines or 
polynomials. This curvature has fewer turning points, 
enhancing its smoothness. 

Key properties of Bezier curves include: 
1. Symmetry: Each coefficient of the curve is 

symmetrical with its reciprocal counterpart. 
2. Convex Hull: The curve always resides within the 

convex hull defined by its control points. 
3. Endpoint Consistency: The first and last control points 

directly correspond to the starting and ending points 
of the Bezier curve. 

4. Recursion: The coefficients of the Bezier curve adhere 
to a recursive formula as follows: 
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 i,n i,n 1 i 1,n 1B (t) (1 t)B (t) tB (t), i 0,1,...,n    (3)                                        

Because a Bezier curve's higher-order derivatives are 
continuous, its curvature smoothly changes from the starting 
point to the ending point. Using degree n Bernstein basis 
polynomials, a parametric curve is defined as a Bezier curve of 
degree n: 

                                                                  

                                                                                

 

Here, t denotes the normalized parameter, Pi(xi,yi)T represents 
the coordinate vector of the ith control point, Bi,n denotes the 
Bernstein basis polynomials, which serve as the basis functions 
in the Bezier curve expression: 

i i i n i

i,n n

n!
B (t) C t t (1 t) ,i 0,1,...,n   (5)

i!(n i)!

   


    

The control points have an impact on the Bezier curve's 
derivatives. Equation 6 provides the first derivative of the 
Bezier curve, which is obtained from Equation 4. 
Furthermore, the computation of higher-order derivatives of 
the Bezier curve is also possible. 

n 1

i,n 1 i 1 i

i 0

dP(t)
P(t) n B (t)(P P )   (6)

dt

. 

 


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The Bezier curve's curvature with respect to t in two 
dimensions is represented as: 

x y y x

2 2
1.5

x y

1 P (t)P (t) P (t)P (t)
k(t)    (7)

R(t)
(P (t) P (t))

. .. . ..

. .


 



                   

In the context of path planning for robots, Bezier curves are 
concatenated to create smooth paths, as depicted in Fig. 7. 

 

Figure 7. Smoothing the path using Bezier curve technique 

Thus, the incorporation of the Bezier curve into the path 
planning process effectively smooths the robot’s trajectory by 
replacing sharp corners and jagged segments with continuous, 
gentle curves. This technique enhances path continuity and 
significantly reduces the number of abrupt turning points. As a 
result, it improves the stability of the robot’s motion and allows 
for smoother and faster navigation by minimizing sudden 
directional changes. 

2.3 Analysis of the BRS-Improved A* Algorithm's Time 
Complexity 

In this section, the flowchart of the BRS-improved A* algorithm 
is presented in Figure 8, incorporating buffer distance, 
redundant point elimination, and smoothing optimization. 

 

Figure 8. Execution Process of the BRS-Improved A* Algorithm 

The method employs a double loop: the inner loop identifies 
and adds the lowest-cost point to the open list by exploring 
neighboring points in four distinct directions. Until the queue 
traversal is finished, the points in the open list are processed by 
the outer loop. The scale of the map, the locations of the 
beginning and ending points, and the characteristics of the 
obstacles are some of the variables that influence the time 
complexity of various path planning algorithms. 

This algorithm is an extension of the traditional A*, 
incorporating three techniques: Buffer Distance, Redundant 
Point Elimination, and Path Smoothing using Bezier Curves. 
These steps are executed sequentially, so the overall 
computational complexity is the sum of the individual 
component steps: 
Computational complexity of traditional A*:  

  
Computational complexity of Buffer Distance: 

  
Computational complexity of Redundant Point Elimination: 

  
Computational complexity of Path Smoothing (Bezier Curve): 

  
Where: 
n: the number of points in the map (for an N × N grid, n = N²) 
d: the length (number of points) in the computed path 
The overall computational complexity of the BRS-Improved A* 
algorithm: 

 

3 SIMULATION TESTING  

3.1 Experiments and Results 

For experimental part, we primarily simulate and evaluate four 
algorithms, including the traditional A* algorithm, buffer 
distance, redundant point elimination, and smoothing 
optimization in Python software.  
Figures 9 – 12 display the path planning results after testing the 
four algorithms, which correspond to the maps of sizes 60×60, 
120×120, 180×180, and 240×240. It can be seen that the 
randomly generated obstacles are indicated by the black 
blocks, the buffer distances are shown by the gray blocks that 
surround these obstacles. The starting point is represented by 
the orange dot, the ending point is shown by the mint blue dot, 
and the final path generated by the improved A* algorithm is 
shown by the purple line. 
The overall distance and point count are shown in Tabs. 1 
through 4, which show how long the intended path is. The 
path’s resilience and smoothness are reflected by the number 
of right-angle turns and the maximum turning angle. Tabs. 1 
through 4 show the statistical outcomes for randomized maps, 
which correlate to the 60×60, 120×120, 180×180, and 240×240 
map sizes. 
 The experiment was programmed in Python software, three 
techniques were performed sequentially: buffer distance, 

 
n

i i,n

i 1

P(t) p B (t), t 0,1    (4)


 
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redundant point elimination, and smoothing optimization. 
Obstacles were arranged randomly, with a size of 6×6. The 
experimental results are presented in Figs. 9 – 12 and Tabs. 1 – 
4. 

 

Figure 9. Simulation results of four algorithms on a 60×60 map. (A) 
Traditional A* algorithm. (B) A* with buffer distance. (C) A* with buffer 
distance and redundant point elimination. (D) BRS-improved A* 
algorithm 

 

Table 1. Simulation results of four algorithms on a 60×60 map  

Indicators Traditional 
A* 
algorithm 

A* with 
Buffer 
distance 

A* with 
Buffer 
distance 
and 
Redundant 
point 
elimination 

BRS-
improved 
A* 
algorithm 

Number 
of points 

93 93 76 76 

Number 
of right-
angle 
turns 

11 11 0 0 

Max 
turning 
angle 

90 90 45 - 

 

 

Figure 10. Simulation results of four algorithms on a 120×120 map. (A) 
Traditional A* algorithm. (B) A* with buffer distance. (C) A* algorithm 
with buffer distance and redundant point elimination. (D) BRS-
improved A* algorithm 

Table 2. Simulation results of four algorithms on a 120×120 map  

Indicators Traditional 
A* 
algorithm 

A* with 
Buffer 
distance 

A* with 
Buffer 
distance 
and 
Redundant 
point 
elimination 

BRS-
improved 
A* 
algorithm 

Number 
of points 

201 205 159 161 

Number 
of right-
angle 
turns 

17 13 0 0 

Max 
turning 
angle 

90 90 45 - 

 

        (2) 
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Figure 11. Simulation results of four algorithms on a 180×180 map. (A) 
Traditional A* algorithm. (B) A* with buffer distance. (C) A* algorithm 
with buffer distance and redundant point elimination (D) BRS-improved 
A* algorithm 

Table 3. Simulation results of four algorithms on a 180×180 map  

Indicators Traditional 
A* 
algorithm 

A* with 
Buffer 
distance 

A* with 
Buffer 
distance 
and 
Redundant 
point 
elimination 

BRS-
improved 
A* 
algorithm 

Number of 
points 

298 298 239 235 

Number of 
right-angle 
turns 

13 10 0 0 

Max 
turning 
angle 

90 90 45 - 

 

 

Figure 12. Simulation results of four algorithms on a 240×240 map. (A) 
Traditional A* algorithm. (B) A* with buffer distance. (C) A* algorithm 
with buffer distance and redundant point elimination (D) BRS-improved 
A* algorithm 

Table 4. Simulation results of four algorithms on a 240×240 map  

Indicators Traditional 
A* 
algorithm 

A* with 
Buffer 
distance 

A* with 
Buffer 
distance 
and 
Redundant 
point 
elimination 

BRS-
improved 
A* 
algorithm 

Number 
of points 

413 413 320 322 

Number 
of right-
angle 
turns 

30 25 0 0 

Max 
turning 
angle 

90 90 45 - 

 

3.2 Analysis of experimental results 

As shown in Tab. 1, the number of path points after applying 
the BRS-improved A* algorithm (the final column of the table) 
is reduced from 93 points to 76 points when compared to the 
traditional A* algorithm, corresponding to an 18.3% reduction. 
After applying redundant point elimination, all right-angle turns 
are smoothed, resulting in no right-angle corners and reducing 
the maximum turning angle to 45˚. 
The data in Tabs. 2-4 indicate that the effectiveness of reducing 
the number of path points increases as the grid resolution of 
the map increases. Specifically, the results in Tabs. 2-4 
correspond to maps with resolutions of 120×120, 180×180 and 
240x240, with the respective reduction rates of the number of 
path points being 19.9, 21.1, and 22%. 
A general overview of the results for all four maps shows that 
the buffer distance only increases the buffer between the 
moving object and the obstacles to reduce the likelihood of a 
collision, without significantly reducing the number of points 
traversed compared to the traditional A* algorithm. It can be 
observed that the number of points in Column 2 (A* with Buffer 
distance) does not differ much from Column 1 (Traditional A* 
algorithm). When Redundant Point Elimination was applied, it 
significantly reduced the number of points traversed. For 
example, in Tab. 2, the number of points decreased from 205 in 
Column 2 (A* with Buffer distance) to 159 in Column 3 (A* with  
Buffer distance and Redundant Point Elimination), reducing the 
number of right angles to zero. Similar data can be seen in the 
remaining tables. The Smoothing Optimization technique did 
not significantly change the number of points but helped 
smooth the path for the moving object (as seen in Figure D on 
the maps). 
Compared with the traditional A* algorithm, the BRS-improved 
A* algorithm, which integrates three techniques — buffer 
distance, redundant point elimination, and smoothing 
optimization — combines the advantages of all these 
techniques to reduce path points, minimize the number of 
turns, and enhance path smoothness. By utilizing buffer 
distances in the improved A* algorithm, padding points are 
incorporated to create barriers, which effectively prevent 
collisions and enhance the robustness of the path. 

4 REAL-WORLD CASE  

This section describes the application of the improved A* 
algorithm presented above in conjunction with the digital twin 
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method to optimize the UR3 robot’s path. Fig. 13 illustrates the 
interactive functionality between the virtual model of the robot 
and its physical counterpart within the digital twin framework. 
The robot's virtual model is developed in Unity, enabling real-
time bidirectional data exchange through Unity's virtual serial 
port between the physical UR3 robot and the virtual 
representation. 

 

4.1 Digital twin of the robot 

Physical robot 

The robot used in the experiment is the UR3, a six-degree-of-
freedom robot. The first three joints are revolute, functioning 
similarly to a human arm and responsible for positioning, while 
the last three joints are spherical, serving as orientation joints 
for the robot's end-effector. This six-degree-of-freedom 
configuration provides the robot with sufficient flexibility and 
complexity for both positioning and orientation tasks. Although 
there is a wide variety of robot types and quantities, the six-
degree-of-freedom structure is common in industrial robots. 
The UR3 collaborative robot, as detailed on the Universal 
Robots website [Universal Robots 2024], weighs only 24.3 lbs 
(11 kg) but has a payload capacity of up to 6.6 lbs (3 kg). It can 
rotate ±360 degrees on all wrist joints and has unlimited 
rotation on the final joint. 

The UR3 robot is equipped with a force sensor to limit the 
collision force with humans or obstacles. The default force 
threshold is 150 N, with a minimum configurable limit of 50 N. 
In the event of a collision, the force sensor enables the robot to 
immediately stop, thereby ensuring operational safety. 

An independent camera system is employed to capture 3D 
images of humans and obstacles within the robot's workspace. 
The acquired data are used to construct obstacle models in the 
software, which serve as input for the robot’s path planning 
and obstacle avoidance algorithms. 

 

Figure 13. Interaction framework between virtual models and physical 
entities 

In the actual experiment, the UR3 robot will find a path from 
the starting point to the ending point with obstacles arranged 
as shown in Fig. 14. 

 

Figure 14. Images of the UR3 robot and obstacle system in real-life 
scenarios 

 

Virtual environment construction 

A virtual model is a virtual replica of a physical object, and 
consists of four layers: geometry, behavior, interaction, and 
association. In geometric models, the relationships (such as size 
and shape) are described [Xiao 2021]. In behavioral modelling, 
the behaviors (i.e., expected, observed, and random) are 
analyzed. In interaction modelling, the virtual model and 
physical object interact with each other in terms of data, 
behavior, and information [Liu 2022, Yun 2022]. Association 
between the geometric, behavioral, and interaction models are 
described by the association model. 

Using Unity, we built the virtual model, controlled its motion, 
and created the experimental scenes as demonstrated [Parak 
2024]. Fig. 15 shows a robot movement scene in Unity, which 
encompasses a virtual robot model and an obstacle system. 
Developing a virtual model necessitates taking into account 
realistic elements, including the robot's material, weight, and 
speed. The simulation generates a virtual robot that replicates 
the characteristics of the physical robot, also known as a digital 
twin. The virtual robot simulation runs continuously and in 
parallel with the physical robot. All state changes in the physical 
robot are reflected in the virtual robot, and vice versa. The 
simulation results of the virtual robot dynamically change 
according to the physical robot's operations. The digital twin 
serves as a critical component in this study by offering a high-
fidelity virtual simulation environment, for pre-training and 
testing the robot’s motion planning strategies. Through 
seamless bidirectional data exchange between the virtual 
model and the physical UR3 robot, the system facilitates 
continuous synchronization and real-time feedback for path 
correction. This interactive framework enables dynamic 
adjustment of the robot’s motion trajectory, thereby enhancing 
operational precision, adaptability to environmental changes, 
and overall robustness of the robotic system. Tab. 5 provides 
the detailed parameters of the experimental environment. 
Regarding the robot's trajectory, it is essential for it to begin 
from the starting position, navigate through obstacles, and 
finally reach the ending point.  
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Figure 15. Images of the UR3 robot and obstacle system in the virtual 
environment 

 

Table 5. Experimental environment parameters 

Facility name Dimensional parameters 

Starting point coordinates (-480; -252.5; 100) 

Ending point coordinates (290; -252.5; 100) 

Size of the pink obstacle 15 cm × 17 cm × 26 cm 

Size of the blue obstacle in 
the middle 

21 cm × 28 cm × 30.5 cm 

Distance from the starting 
point to the left plane of the 
blue obstacle in the middle 

23 cm 

Distance from the ending 
point to the right plane of 
the blue obstacle in the 
middle 

13 cm 

 

Experimental Procedure 

The virtual model is a tool for precise mapping, simulation, and 
feedback refinement in digital twin technology. Several 
simulation tests are carried out within the virtual environment 
to identify suitable operating parameters, which are then 
transmitted to the actual system, enabling the virtual model to 
control it [Liu 2021]. Before starting experiments, we ensure 
that consistent values are set for both the movement speed of 
the physical robot and the lifting speed of the electric actuator. 
By using an orthogonal encoder for global positioning, the 
physical robot can navigate directionally by defining the 
coordinates of the ending point. 

Within digital twin technology, the virtual model functions as a 
reflection of reality, simulating and making adjustments based 
on feedback received from the physical model. Following 
multiple assessments of the system's performance within the 
virtual environment, suitable operating parameters are 
identified and transmitted to the physical system to facilitate 
control of the virtual model via the physical model [Liu 2021]. 
Before beginning the experiment, we set a movement speed 
for the physical robot, the starting and ending positions of the 
robot during its movement, and a predefined system of 
obstacles. 

There are three data classes exchanged between the physical 
robot and its digital twin, including: 

• The “ur_stream_data” class is used to transmit information 
from the physical robot to the virtual robot, including: 
connection port address, joint angles, end-effector coordinates, 
and end-effector orientation angles. 

• The “ur_control_data” class is used to send control signals 
from the Unity simulation software to the physical robot, 
including: connection port address, command byte sent to the 
robot, and the state of the 12 virtual control buttons in the 
software interface. 

• The “global_variable_main_control” class is used to store 
connection status variables. 

These data are exchanged in a continuous stream from the 
moment the connection is established until a disconnect signal 
is received, with a time step of 8 milliseconds between each 
data exchange cycle. 

The specific operational procedure is as follows: 

A common coordinate system is chosen for the robot's physical 
system and the virtual replicate. After the path coordinates are 
received, the physical robot receives the coordinates of the 
Starting and Ending points so it can move in accordance with 
the coordinates. The path the real robot travels is the one it 
learned during its training in the simulated setting. In the virtual 
environment, the improved A* algorithm helps the robot find 
the optimal path from the Starting point to the Ending point, 
with the result being a path for the physical robot to follow. 

Subsequently, the physical robot initiates movement based on 
the trajectory determined within the virtual environment, 
considering the coordinate alignment with the actual 
surroundings, and adjustments are made as necessary. At the 
same time, the real-time coordinate data of the path is 
transmitted to the virtual environment. Using the incoming 
real-time coordinates, the virtual model moves inside the 
virtual environment and detects any deviations in the actual 
robot's track from the predefined path. Through the use of 
digital twin technology, the coordinates of the path's important 
locations are constantly modified in accordance with the path 
deviation, thus increasing the precision of the actual motion 
trajectory. 

4.2 Results 

The improved A* algorithm is used in the virtual environment 
to find the path for the robot. The algorithm is applied in a 
sequence of three steps: buffer distance to help reduce the 
possibility of collisions when attaching end tools to the robot, 
such as a gripper tool to move objects from Starting point to 
Ending point; reducing intermediate points to eliminate 
redundant points; and decreasing the robot's travel time. For 
example, in this experiment, the number of points was reduced 
by using the improved A* algorithm instead of the traditional 
A* algorithm i.e., reducing from 4 points to 2 intermediate 
points; the robot's path length decreased from 1470 mm to 
1125 mm, corresponding to a reduction of 23.5%. As the path 
complexity and the number of obstacles increase, the efficiency 
also improves. 

Figs. 16-18 show the robot's path when the improved A* 
algorithm is applied step by step. 

 

Figure 16. Robot path found using the traditional A* algorithm 
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Figure 17. Robot path after applying buffer distance and redundant 
point elimination 

 

Figure 18. Robot path after applying smoothing step 

Fig. 19 shows the robot's path in the virtual environment found 
after applying the BRS-improved A* algorithm. 

 

 

 

 

 

 

 

 

 

Figure 19. The BRS-improved A* algorithm with 3 steps applied to the 
virtual robot in Unity 

 
Then, the real robot with the IP address 192.168.1.6 is 
connected to its digital twin robot as shown in Fig. 20. 

 
Figure 20. Connecting the real robot with the virtual robot in the digital 
twin 

 
The resulting path found in the virtual model is applied to the 
physical model to verify its alignment with reality, making any 
necessary adjustments before being implemented in the actual 
system. 

5 DISCUSSION AND CONCLUSION  

In this paper, the BRS-improved A* algorithm has been studied, 
which includes three techniques: buffer distance, redundant 
point elimination, and smoothing optimization. Simulation test 
results indicate that the reduction in the number of movement 
points achieved 18.3, 19.9, 21.1, and 22% corresponding to 
60×60, 120×120, 180×180 and 240×240 maps, respectively. 
Additionally, the number of right-angle turns was reduced to 
zero, resulting in smoother and more efficient paths. Then, a 
specific study on a device is conducted, specifically an 
experiment with the UR3 robot applying the digital twin 
combined with the BRS-improved A* algorithm to find a path 
that avoids obstacles. 
A virtual model that mirrors a physical entity is developed in 
Unity, creating a virtual environment that reflects real-world 
conditions. Utilizing the interactive data features of digital twin 
technology, the robot's route in the virtual setting is crafted 
through the BRS-improved A* algorithm. This path is then 
dynamically modified in the physical system to ensure 
alignment with actual conditions, enhancing the accuracy of the 
robot's movements and facilitating the integration of virtual 
and real closed-loop control. The primary focus of this research 
is on the establishment of the UR3 robot's digital twin, ensuring 
seamless communication between the virtual model and the 
physical counterpart, and optimizing the motion trajectory of 
the UR3 robot. The path length of the UR3 robot was reduced 
by 23.5% when applying the BRS-improved A* algorithm 
compared to the traditional A* algorithm. 
The combination of digital twins and the BRS-improved A* 
algorithm has the following advantages. Digital twins create a 
dynamic virtual model of the physical environment, 
continuously updated with real-time data from sensors and 
other sources. This up-to-date model allows the BRS-improved 
A* algorithm to calculate the most precise and efficient paths 
by accounting for current conditions and obstacles, resulting in 
improved accuracy and adaptability in dynamic environments 
[Denk 2022]. Digital twins enable the simulation of complex 
and multi-layered environments, both in 2D and 3D. This 
capability is crucial for industries like manufacturing and 
logistics, where robots must navigate intricate layouts. The 
combination with the BRS-improved A* allows for efficient path 
planning that considers multiple layers of information, 
optimizing routes in real-time. By providing a detailed and 
accurate virtual representation of the physical system, digital 
twins help in predictive maintenance. Potential issues can be 
identified and addressed before they cause significant 
downtime, reducing maintenance costs and improving overall 
operational efficiency.   
The response of the robot, within the framework of the 
proposed BRS-Improved A* algorithm integrated with the 
digital twin, refers to the robot’s capability to accurately 
execute the optimized path generated in the virtual 
environment and to adapt reliably to real-world operational 
conditions, ensuring both precision and safety during 
navigation. 

Future research will expand to incorporate digital twins and the 
BRS-A* algorithm for pathfinding in multiple robots operating 
concurrently in more complex environments. These 
environments will include unexpected mobile obstacles, 
necessitating real-time, faster, and more precise reactions from 
the robots. 
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