MODEL ORDER REDUCTION METHODS FOR COUPLED MACHINE TOOL MODELS

  • 1TU Chemnitz, Faculty of Mathematics, Chemnitz, Germany, Chemnitz, DE
  • 2TU Dresden, Institute of Solid Mechanics, Chair of Dynamics and Mechanism Design, Dresden, Germany, Dresden, DE
  • 3Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany, Magdeburg, DE

Abstract

Thermal effects are the most dominant source for displacements in machine tools and thus work-piece inaccuracies during the manufacturing process. A promising strategy to meet the ever-increasing accuracy requirements is the use of predictive models for, e.g., parameter and design op-timizations or online correction of the thermally induced error at the tool center point (TCP) in the pro-duction process. However, these techniques require fast but precise simulations. The need for high model accuracy is in direct contrast to the desired real-time capabilities. Model order reduction (MOR) is an attractive tool to overcome this problem. A modeling toolchain, which is tailored for the effective construction of fast and accurate models is proposed and demonstrated, emphasizing the involved MOR step.

Recommended articles

THERMAL STIFFNESS – A KEY ACCURACY INDICATOR OF MACHINE TOOLS

A. P. Kuznetsov, H. J. Koriath
Keywords: Machine tool | thermo-physical model | thermoelasticity | thermal stiffness | accuracy indicator

A PROPOSAL FOR A SYSTEMATIZATION AND TAXONOMY OF METHODS TO RECTIFY THERMALLY INDUCED ERRORS ON EXISTING MACHINE TOOLS

C. Gißke, T. Albrecht, H. Wiemer, W. Esswein, S. Ihlenfeldt
Keywords: Thermal effects | thermal error | Correction | Compensation | system

EXAMINATION OF COOLING SYSTEMS IN MACHINE TOOLS REGARDING SYSTEM STRUCTURE AND CONTROL STRATEGIES

C. Steiert, Ju. Weber, J. Weber
Keywords: Machine tools | Fluid Cooling Systems | Thermal Behavior | Energy Efficiency | Closed Loop Control | Main Spindle | Experiment

UNDERSTANDING TEMPERATURE EFFECTS ON FRICTION AT TOOL – CFRP WORKPIECE INTERFACE USING OPEN-LOOP FRICTION TESTING

S. Ashworth, K. Kerrigan
Keywords: CFRP | Machining | Friction | HSS | carbide | CVD coated carbide