ANALYSIS OF CONTOUR ACCURACY AND PROCESS FORCES USING A CHAMBER-BORING-SYSTEM

Abstract

Deep hole drilling is a metal cutting method for producing primary cylindrical deep bores with a length-to-diameter ratio larger than l/D = 10. Due to the increasing interest of different branches of the industry in inner contoured workpieces, the Institute of Machining Technology (ISF) and the BGTB GmbH developed a chamber boring system, which allows to contour boreholes in axial and radial directions. This paper presents the influence of different cutting speeds, feeds and workpiece materials on the contour accuracy and the mechanical tool loading.

Recommended articles

FREQUENCY RESPONSE PREDICTION FOR ROBOT ASSISTED MACHINING

A. Barrios, S. Mata, A. Fernandez, J. Munoa, C. Sun, E. Ozturk
Keywords: Robot; Dynamics; Frequency response; Receptance coupling; Machining

OPERATIONAL METHOD FOR IDENTIFICATION OF SPECIFIC CUTTING FORCE DURING MILLING

M. janota, P. Kolar, M. Sulitka
Keywords: Specific cutting force; Mechanistic approach; Chatter; Frequency response function

INVESTIGATION OF PROCESSES IN HIGH-SPEED EQUIPMENT USING CNC CAPABILITIES

Ye. Aksonov, V. Kombarov, O. Fojtu, V. Sorokin, Ye. Kryzhyvets
Keywords: CNC; High-speed equipment; Parameters recording

ANALYSIS OF SURFACE POST-PROCESSING TECHNIQUES FOR IMPROVEMENT OF ADDITIVE MANUFACTURED PARTS IN AEROSPACE

M. O. Oyesola, K. Mpofu, N. Mathe, S. Hoosian, I. Tlhabadira
Keywords: Additive manufacturing; Post-processing; Aerospace