ANALYSIS OF CONTOUR ACCURACY AND PROCESS FORCES USING A CHAMBER-BORING-SYSTEM

Abstract

Deep hole drilling is a metal cutting method for producing primary cylindrical deep bores with a length-to-diameter ratio larger than l/D = 10. Due to the increasing interest of different branches of the industry in inner contoured workpieces, the Institute of Machining Technology (ISF) and the BGTB GmbH developed a chamber boring system, which allows to contour boreholes in axial and radial directions. This paper presents the influence of different cutting speeds, feeds and workpiece materials on the contour accuracy and the mechanical tool loading.

Recommended articles

CONTROL OF HYBRID ELECTRIC-HYDRAULIC DRIVE FOR VERTICAL FEED AXES OF MACHINE TOOLS

S. Fiala, A. Bubak, L. Novotny
Keywords: 1Czech Technical University in Prague | Research Center of Manufacturing Technology

ADAPTIVE TOOLPATH FOR 3-AXIS MILLING OF THIN WALLED PARTS

N. Grossi, A. Scippa, L. Croppi, L. Morelli, G. Campatelli
Keywords: Toolpath; Milling; Thin-wall workpiece

NICKEL-BASED ALLOY DRY MILLING FORCE AND TEMPERATURE BY USING MONOLITHIC CERAMIC END MILL TOOL

Z. Yuan, J. Zha, J. Liang, Y. Li, Y. Chen
Keywords: Nickel-based alloy; Monolithic ceramic end mill; High speed milling; Material removal rate

VIBRATION ATTENUATION OF BORING BARS WITH NONLINEAR CONTROL FORCE

Z. Iklodi, A. Astarloa, Z. Dombovari
Keywords: Boring bar; Active damper; Nonlinear force; Linear stability