INVERSE MATERIAL MODEL PARAMETER IDENTIFICATION FOR METAL CUTTING SIMULATIONS BY OPTIMIZATION STRATEGIES

Abstract

Numerical modeling of machining processes exhibits a high potential for shortening process development times. When modeling the machining process, an accurate material model is essential for the success and reliability of the simulated results. Especially, the simulation results depend largely on the material model and on the material parameters. To identify the parameters for machining conditions, inverse methods are used, where results from simulations are matched iteratively with those obtained experimentally. This procedure is, however, time-consuming and a large number of iterations is needed. This paper presents a new methodology for the inverse identification of material parameters by an optimization algorithm.

Recommended articles

ESTIMATION OF ENGAGEMENT CONDITIONS USING AN ANN PATTERN RECOGNITION SYSTEM ON THE BASE OF A SENSORY TOOL HOLDER

T. Bergs, D. Scharknepper, S. Goetz
Keywords: Process monitoring; milling; Industry 4.0; ANN

VIBRATION ATTENUATION OF BORING BARS WITH NONLINEAR CONTROL FORCE

Z. Iklodi, A. Astarloa, Z. Dombovari
Keywords: Boring bar; Active damper; Nonlinear force; Linear stability

INVESTIGATION OF PROCESSES IN HIGH-SPEED EQUIPMENT USING CNC CAPABILITIES

Ye. Aksonov, V. Kombarov, O. Fojtu, V. Sorokin, Ye. Kryzhyvets
Keywords: CNC; High-speed equipment; Parameters recording

MATERIAL REMOVAL MODE IN 3D MICRO USM

Y. Chen, Z. Yu, G. Li, S. Lei, N. Wataru
Keywords: Micromachining; Ultrasonic vibration; Material removal mode; 3D micro cavity; Surface roughness