MODAL-SPACE CONTROL OF A LINEAR MOTOR-DRIVEN GANTRY SYSTEM

  • 1Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Department of Machine Tools Development and Adaptive Controls, Dresden, DE
  • 2Fraunhofer Institute for Machine Tools and Forming Technology IWU, Dresden, DE

Abstract

This paper presents the modal control applied to motion systems, in particular for machine tools. This control approach is particularly suitable for over-actuated systems that have more actuators than degrees of freedom. By using the modal approach, the parameterisation of the control loops is simplified since each control loop corresponds to a specific eigenmode. A four-variable modal control of a linear motor-driven gantry system equipped with additional active damping devices is presented to achieve active vibration suppression. This approach is experimentally compared with a conventional control method that does not consider the eigenmodes of the system. The influence of the vibration controllers on the closed position loops is investigated.

Recommended articles

VIBRATION ATTENUATION OF BORING BARS WITH NONLINEAR CONTROL FORCE

Z. Iklodi, A. Astarloa, Z. Dombovari
Keywords: Boring bar; Active damper; Nonlinear force; Linear stability

FEED DRIVE CONDITION MONITORING USING MODAL PARAMETERS

J. Ellinger, T. Semm, M. Benker, P. Kapfinger, R. Kleinwort, M. F. Zäh
Keywords: Feed drive; Condition monitoring; Ball screw; Linear guide; Preload loss; Analysis of variance; Machine tool

INVERSE MATERIAL MODEL PARAMETER IDENTIFICATION FOR METAL CUTTING SIMULATIONS BY OPTIMIZATION STRATEGIES

T. Bergs, M. Hardt, D. Schraknepper
Keywords: Johnson-Cook model; Simulation; Optimization; Inverse identification; Machining

SENSORS AS AN ENABLER FOR SELF-OPTIMIZING GRINDING MACHINES

M. Maier, T. Gittler, L. Weiss, C. Bobst , S. Scholze , K. Wegener
Keywords: Sensor fusion; Self-optimizing machines; Cost calculation; Process boundary; Grinding burn; Gas sensor; Temperature sensor; Surface roughness