DPART – A DIGITAL TWIN FRAMEWORK FOR THE MACHINING DOMAIN

  • 1Fraunhofer Institute for Production Technology IPT, Dept. High Performance Cutting, Aachen, DE
  • 2Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Aachen, DE

Abstract

Todays’ heterogeneous manufacturing environments and isolated manufacturing elements hinder the realization of a complete and data consistent digital twin. Against this background, an increased connectivity based on the Industrial Internet of Things (IIoT) might be the future key enabler for the digital twin. However, it requires each domain to transfer, rearrange and rethink their individual data solutions in a framework that is IIoT-ready. This paper presents an IIoT-based implementation of a digital twin framework for machining, enabling the creation of a complete and data consistent digital twin throughout process planning, manufacturing and quality assurance. Different use cases are introduced based on the example of a blade integrated disk for modern turbofan engines.

Recommended articles

COMPARISON OF SPRAYABILITY AND SOLUBILITY OF BIO-BASED LUBRICANTS WITH LIQUID CARBON DIOXIDE

T. Meier, D. Gross, N. Hanenkamp
Keywords: CMQL | milling | turning | bio-based oils | carbon dioxide

RAPID UNCERTAINTY QUANTIFICATION OF THE STABILITY ANALYSIS USING A PROBABILISTIC ESTIMATION OF THE PROCESS FORCE PARAMETERS

M. Busch, B. Schmucker, M. F. Zaeh
Keywords: Uncertainty quantification | probabilistic parameter estimation | machining simulation | stability analysis

ASSESSMENT OF FINISH MACHINING AND MASS FINISHING AS POST-PROCESSING METHODS FOR PBF-LB/M-MANUFACTURED 316L

C. Fuchs, L. Kick, O. Leprevost, M. F. Zaeh
Keywords: Post-Processing | finishing | Vibratory Finishing | additive manufacturing | Machining Allowance

INVESTIGATION OF LUBRICATING OILS FROM RENEWABLE RESOURCES FOR CRYOGENIC MINIMUM QUANTITY LUBRICATION

T. Meier, D. Gross, N. Hanenkamp
Keywords: CMQL | milling | turning | bio-based oils | carbon dioxide